opencv_face_detector.pbtxt 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368
  1. node {
  2. name: "data"
  3. op: "Placeholder"
  4. attr {
  5. key: "dtype"
  6. value {
  7. type: DT_FLOAT
  8. }
  9. }
  10. }
  11. node {
  12. name: "data_bn/FusedBatchNorm"
  13. op: "FusedBatchNorm"
  14. input: "data:0"
  15. input: "data_bn/gamma"
  16. input: "data_bn/beta"
  17. input: "data_bn/mean"
  18. input: "data_bn/std"
  19. attr {
  20. key: "epsilon"
  21. value {
  22. f: 1.00099996416e-05
  23. }
  24. }
  25. }
  26. node {
  27. name: "data_scale/Mul"
  28. op: "Mul"
  29. input: "data_bn/FusedBatchNorm"
  30. input: "data_scale/mul"
  31. }
  32. node {
  33. name: "data_scale/BiasAdd"
  34. op: "BiasAdd"
  35. input: "data_scale/Mul"
  36. input: "data_scale/add"
  37. }
  38. node {
  39. name: "SpaceToBatchND/block_shape"
  40. op: "Const"
  41. attr {
  42. key: "value"
  43. value {
  44. tensor {
  45. dtype: DT_INT32
  46. tensor_shape {
  47. dim {
  48. size: 2
  49. }
  50. }
  51. int_val: 1
  52. int_val: 1
  53. }
  54. }
  55. }
  56. }
  57. node {
  58. name: "SpaceToBatchND/paddings"
  59. op: "Const"
  60. attr {
  61. key: "value"
  62. value {
  63. tensor {
  64. dtype: DT_INT32
  65. tensor_shape {
  66. dim {
  67. size: 2
  68. }
  69. dim {
  70. size: 2
  71. }
  72. }
  73. int_val: 3
  74. int_val: 3
  75. int_val: 3
  76. int_val: 3
  77. }
  78. }
  79. }
  80. }
  81. node {
  82. name: "Pad"
  83. op: "SpaceToBatchND"
  84. input: "data_scale/BiasAdd"
  85. input: "SpaceToBatchND/block_shape"
  86. input: "SpaceToBatchND/paddings"
  87. }
  88. node {
  89. name: "conv1_h/Conv2D"
  90. op: "Conv2D"
  91. input: "Pad"
  92. input: "conv1_h/weights"
  93. attr {
  94. key: "dilations"
  95. value {
  96. list {
  97. i: 1
  98. i: 1
  99. i: 1
  100. i: 1
  101. }
  102. }
  103. }
  104. attr {
  105. key: "padding"
  106. value {
  107. s: "VALID"
  108. }
  109. }
  110. attr {
  111. key: "strides"
  112. value {
  113. list {
  114. i: 1
  115. i: 2
  116. i: 2
  117. i: 1
  118. }
  119. }
  120. }
  121. }
  122. node {
  123. name: "conv1_h/BiasAdd"
  124. op: "BiasAdd"
  125. input: "conv1_h/Conv2D"
  126. input: "conv1_h/bias"
  127. }
  128. node {
  129. name: "BatchToSpaceND"
  130. op: "BatchToSpaceND"
  131. input: "conv1_h/BiasAdd"
  132. }
  133. node {
  134. name: "conv1_bn_h/FusedBatchNorm"
  135. op: "FusedBatchNorm"
  136. input: "BatchToSpaceND"
  137. input: "conv1_bn_h/gamma"
  138. input: "conv1_bn_h/beta"
  139. input: "conv1_bn_h/mean"
  140. input: "conv1_bn_h/std"
  141. attr {
  142. key: "epsilon"
  143. value {
  144. f: 1.00099996416e-05
  145. }
  146. }
  147. }
  148. node {
  149. name: "conv1_scale_h/Mul"
  150. op: "Mul"
  151. input: "conv1_bn_h/FusedBatchNorm"
  152. input: "conv1_scale_h/mul"
  153. }
  154. node {
  155. name: "conv1_scale_h/BiasAdd"
  156. op: "BiasAdd"
  157. input: "conv1_scale_h/Mul"
  158. input: "conv1_scale_h/add"
  159. }
  160. node {
  161. name: "Relu"
  162. op: "Relu"
  163. input: "conv1_scale_h/BiasAdd"
  164. }
  165. node {
  166. name: "conv1_pool/MaxPool"
  167. op: "MaxPool"
  168. input: "Relu"
  169. attr {
  170. key: "ksize"
  171. value {
  172. list {
  173. i: 1
  174. i: 3
  175. i: 3
  176. i: 1
  177. }
  178. }
  179. }
  180. attr {
  181. key: "padding"
  182. value {
  183. s: "SAME"
  184. }
  185. }
  186. attr {
  187. key: "strides"
  188. value {
  189. list {
  190. i: 1
  191. i: 2
  192. i: 2
  193. i: 1
  194. }
  195. }
  196. }
  197. }
  198. node {
  199. name: "layer_64_1_conv1_h/Conv2D"
  200. op: "Conv2D"
  201. input: "conv1_pool/MaxPool"
  202. input: "layer_64_1_conv1_h/weights"
  203. attr {
  204. key: "dilations"
  205. value {
  206. list {
  207. i: 1
  208. i: 1
  209. i: 1
  210. i: 1
  211. }
  212. }
  213. }
  214. attr {
  215. key: "padding"
  216. value {
  217. s: "SAME"
  218. }
  219. }
  220. attr {
  221. key: "strides"
  222. value {
  223. list {
  224. i: 1
  225. i: 1
  226. i: 1
  227. i: 1
  228. }
  229. }
  230. }
  231. }
  232. node {
  233. name: "layer_64_1_bn2_h/FusedBatchNorm"
  234. op: "BiasAdd"
  235. input: "layer_64_1_conv1_h/Conv2D"
  236. input: "layer_64_1_conv1_h/Conv2D_bn_offset"
  237. }
  238. node {
  239. name: "layer_64_1_scale2_h/Mul"
  240. op: "Mul"
  241. input: "layer_64_1_bn2_h/FusedBatchNorm"
  242. input: "layer_64_1_scale2_h/mul"
  243. }
  244. node {
  245. name: "layer_64_1_scale2_h/BiasAdd"
  246. op: "BiasAdd"
  247. input: "layer_64_1_scale2_h/Mul"
  248. input: "layer_64_1_scale2_h/add"
  249. }
  250. node {
  251. name: "Relu_1"
  252. op: "Relu"
  253. input: "layer_64_1_scale2_h/BiasAdd"
  254. }
  255. node {
  256. name: "layer_64_1_conv2_h/Conv2D"
  257. op: "Conv2D"
  258. input: "Relu_1"
  259. input: "layer_64_1_conv2_h/weights"
  260. attr {
  261. key: "dilations"
  262. value {
  263. list {
  264. i: 1
  265. i: 1
  266. i: 1
  267. i: 1
  268. }
  269. }
  270. }
  271. attr {
  272. key: "padding"
  273. value {
  274. s: "SAME"
  275. }
  276. }
  277. attr {
  278. key: "strides"
  279. value {
  280. list {
  281. i: 1
  282. i: 1
  283. i: 1
  284. i: 1
  285. }
  286. }
  287. }
  288. }
  289. node {
  290. name: "add"
  291. op: "Add"
  292. input: "layer_64_1_conv2_h/Conv2D"
  293. input: "conv1_pool/MaxPool"
  294. }
  295. node {
  296. name: "layer_128_1_bn1_h/FusedBatchNorm"
  297. op: "FusedBatchNorm"
  298. input: "add"
  299. input: "layer_128_1_bn1_h/gamma"
  300. input: "layer_128_1_bn1_h/beta"
  301. input: "layer_128_1_bn1_h/mean"
  302. input: "layer_128_1_bn1_h/std"
  303. attr {
  304. key: "epsilon"
  305. value {
  306. f: 1.00099996416e-05
  307. }
  308. }
  309. }
  310. node {
  311. name: "layer_128_1_scale1_h/Mul"
  312. op: "Mul"
  313. input: "layer_128_1_bn1_h/FusedBatchNorm"
  314. input: "layer_128_1_scale1_h/mul"
  315. }
  316. node {
  317. name: "layer_128_1_scale1_h/BiasAdd"
  318. op: "BiasAdd"
  319. input: "layer_128_1_scale1_h/Mul"
  320. input: "layer_128_1_scale1_h/add"
  321. }
  322. node {
  323. name: "Relu_2"
  324. op: "Relu"
  325. input: "layer_128_1_scale1_h/BiasAdd"
  326. }
  327. node {
  328. name: "layer_128_1_conv_expand_h/Conv2D"
  329. op: "Conv2D"
  330. input: "Relu_2"
  331. input: "layer_128_1_conv_expand_h/weights"
  332. attr {
  333. key: "dilations"
  334. value {
  335. list {
  336. i: 1
  337. i: 1
  338. i: 1
  339. i: 1
  340. }
  341. }
  342. }
  343. attr {
  344. key: "padding"
  345. value {
  346. s: "SAME"
  347. }
  348. }
  349. attr {
  350. key: "strides"
  351. value {
  352. list {
  353. i: 1
  354. i: 2
  355. i: 2
  356. i: 1
  357. }
  358. }
  359. }
  360. }
  361. node {
  362. name: "layer_128_1_conv1_h/Conv2D"
  363. op: "Conv2D"
  364. input: "Relu_2"
  365. input: "layer_128_1_conv1_h/weights"
  366. attr {
  367. key: "dilations"
  368. value {
  369. list {
  370. i: 1
  371. i: 1
  372. i: 1
  373. i: 1
  374. }
  375. }
  376. }
  377. attr {
  378. key: "padding"
  379. value {
  380. s: "SAME"
  381. }
  382. }
  383. attr {
  384. key: "strides"
  385. value {
  386. list {
  387. i: 1
  388. i: 2
  389. i: 2
  390. i: 1
  391. }
  392. }
  393. }
  394. }
  395. node {
  396. name: "layer_128_1_bn2/FusedBatchNorm"
  397. op: "BiasAdd"
  398. input: "layer_128_1_conv1_h/Conv2D"
  399. input: "layer_128_1_conv1_h/Conv2D_bn_offset"
  400. }
  401. node {
  402. name: "layer_128_1_scale2/Mul"
  403. op: "Mul"
  404. input: "layer_128_1_bn2/FusedBatchNorm"
  405. input: "layer_128_1_scale2/mul"
  406. }
  407. node {
  408. name: "layer_128_1_scale2/BiasAdd"
  409. op: "BiasAdd"
  410. input: "layer_128_1_scale2/Mul"
  411. input: "layer_128_1_scale2/add"
  412. }
  413. node {
  414. name: "Relu_3"
  415. op: "Relu"
  416. input: "layer_128_1_scale2/BiasAdd"
  417. }
  418. node {
  419. name: "layer_128_1_conv2/Conv2D"
  420. op: "Conv2D"
  421. input: "Relu_3"
  422. input: "layer_128_1_conv2/weights"
  423. attr {
  424. key: "dilations"
  425. value {
  426. list {
  427. i: 1
  428. i: 1
  429. i: 1
  430. i: 1
  431. }
  432. }
  433. }
  434. attr {
  435. key: "padding"
  436. value {
  437. s: "SAME"
  438. }
  439. }
  440. attr {
  441. key: "strides"
  442. value {
  443. list {
  444. i: 1
  445. i: 1
  446. i: 1
  447. i: 1
  448. }
  449. }
  450. }
  451. }
  452. node {
  453. name: "add_1"
  454. op: "Add"
  455. input: "layer_128_1_conv2/Conv2D"
  456. input: "layer_128_1_conv_expand_h/Conv2D"
  457. }
  458. node {
  459. name: "layer_256_1_bn1/FusedBatchNorm"
  460. op: "FusedBatchNorm"
  461. input: "add_1"
  462. input: "layer_256_1_bn1/gamma"
  463. input: "layer_256_1_bn1/beta"
  464. input: "layer_256_1_bn1/mean"
  465. input: "layer_256_1_bn1/std"
  466. attr {
  467. key: "epsilon"
  468. value {
  469. f: 1.00099996416e-05
  470. }
  471. }
  472. }
  473. node {
  474. name: "layer_256_1_scale1/Mul"
  475. op: "Mul"
  476. input: "layer_256_1_bn1/FusedBatchNorm"
  477. input: "layer_256_1_scale1/mul"
  478. }
  479. node {
  480. name: "layer_256_1_scale1/BiasAdd"
  481. op: "BiasAdd"
  482. input: "layer_256_1_scale1/Mul"
  483. input: "layer_256_1_scale1/add"
  484. }
  485. node {
  486. name: "Relu_4"
  487. op: "Relu"
  488. input: "layer_256_1_scale1/BiasAdd"
  489. }
  490. node {
  491. name: "SpaceToBatchND_1/paddings"
  492. op: "Const"
  493. attr {
  494. key: "value"
  495. value {
  496. tensor {
  497. dtype: DT_INT32
  498. tensor_shape {
  499. dim {
  500. size: 2
  501. }
  502. dim {
  503. size: 2
  504. }
  505. }
  506. int_val: 1
  507. int_val: 1
  508. int_val: 1
  509. int_val: 1
  510. }
  511. }
  512. }
  513. }
  514. node {
  515. name: "layer_256_1_conv_expand/Conv2D"
  516. op: "Conv2D"
  517. input: "Relu_4"
  518. input: "layer_256_1_conv_expand/weights"
  519. attr {
  520. key: "dilations"
  521. value {
  522. list {
  523. i: 1
  524. i: 1
  525. i: 1
  526. i: 1
  527. }
  528. }
  529. }
  530. attr {
  531. key: "padding"
  532. value {
  533. s: "SAME"
  534. }
  535. }
  536. attr {
  537. key: "strides"
  538. value {
  539. list {
  540. i: 1
  541. i: 2
  542. i: 2
  543. i: 1
  544. }
  545. }
  546. }
  547. }
  548. node {
  549. name: "conv4_3_norm/l2_normalize"
  550. op: "L2Normalize"
  551. input: "Relu_4:0"
  552. input: "conv4_3_norm/l2_normalize/Sum/reduction_indices"
  553. }
  554. node {
  555. name: "conv4_3_norm/mul_1"
  556. op: "Mul"
  557. input: "conv4_3_norm/l2_normalize"
  558. input: "conv4_3_norm/mul"
  559. }
  560. node {
  561. name: "conv4_3_norm_mbox_loc/Conv2D"
  562. op: "Conv2D"
  563. input: "conv4_3_norm/mul_1"
  564. input: "conv4_3_norm_mbox_loc/weights"
  565. attr {
  566. key: "dilations"
  567. value {
  568. list {
  569. i: 1
  570. i: 1
  571. i: 1
  572. i: 1
  573. }
  574. }
  575. }
  576. attr {
  577. key: "padding"
  578. value {
  579. s: "SAME"
  580. }
  581. }
  582. attr {
  583. key: "strides"
  584. value {
  585. list {
  586. i: 1
  587. i: 1
  588. i: 1
  589. i: 1
  590. }
  591. }
  592. }
  593. }
  594. node {
  595. name: "conv4_3_norm_mbox_loc/BiasAdd"
  596. op: "BiasAdd"
  597. input: "conv4_3_norm_mbox_loc/Conv2D"
  598. input: "conv4_3_norm_mbox_loc/bias"
  599. }
  600. node {
  601. name: "flatten/Reshape"
  602. op: "Flatten"
  603. input: "conv4_3_norm_mbox_loc/BiasAdd"
  604. }
  605. node {
  606. name: "conv4_3_norm_mbox_conf/Conv2D"
  607. op: "Conv2D"
  608. input: "conv4_3_norm/mul_1"
  609. input: "conv4_3_norm_mbox_conf/weights"
  610. attr {
  611. key: "dilations"
  612. value {
  613. list {
  614. i: 1
  615. i: 1
  616. i: 1
  617. i: 1
  618. }
  619. }
  620. }
  621. attr {
  622. key: "padding"
  623. value {
  624. s: "SAME"
  625. }
  626. }
  627. attr {
  628. key: "strides"
  629. value {
  630. list {
  631. i: 1
  632. i: 1
  633. i: 1
  634. i: 1
  635. }
  636. }
  637. }
  638. }
  639. node {
  640. name: "conv4_3_norm_mbox_conf/BiasAdd"
  641. op: "BiasAdd"
  642. input: "conv4_3_norm_mbox_conf/Conv2D"
  643. input: "conv4_3_norm_mbox_conf/bias"
  644. }
  645. node {
  646. name: "flatten_6/Reshape"
  647. op: "Flatten"
  648. input: "conv4_3_norm_mbox_conf/BiasAdd"
  649. }
  650. node {
  651. name: "Pad_1"
  652. op: "SpaceToBatchND"
  653. input: "Relu_4"
  654. input: "SpaceToBatchND/block_shape"
  655. input: "SpaceToBatchND_1/paddings"
  656. }
  657. node {
  658. name: "layer_256_1_conv1/Conv2D"
  659. op: "Conv2D"
  660. input: "Pad_1"
  661. input: "layer_256_1_conv1/weights"
  662. attr {
  663. key: "dilations"
  664. value {
  665. list {
  666. i: 1
  667. i: 1
  668. i: 1
  669. i: 1
  670. }
  671. }
  672. }
  673. attr {
  674. key: "padding"
  675. value {
  676. s: "VALID"
  677. }
  678. }
  679. attr {
  680. key: "strides"
  681. value {
  682. list {
  683. i: 1
  684. i: 2
  685. i: 2
  686. i: 1
  687. }
  688. }
  689. }
  690. }
  691. node {
  692. name: "layer_256_1_bn2/FusedBatchNorm"
  693. op: "BiasAdd"
  694. input: "layer_256_1_conv1/Conv2D"
  695. input: "layer_256_1_conv1/Conv2D_bn_offset"
  696. }
  697. node {
  698. name: "BatchToSpaceND_1"
  699. op: "BatchToSpaceND"
  700. input: "layer_256_1_bn2/FusedBatchNorm"
  701. }
  702. node {
  703. name: "layer_256_1_scale2/Mul"
  704. op: "Mul"
  705. input: "BatchToSpaceND_1"
  706. input: "layer_256_1_scale2/mul"
  707. }
  708. node {
  709. name: "layer_256_1_scale2/BiasAdd"
  710. op: "BiasAdd"
  711. input: "layer_256_1_scale2/Mul"
  712. input: "layer_256_1_scale2/add"
  713. }
  714. node {
  715. name: "Relu_5"
  716. op: "Relu"
  717. input: "layer_256_1_scale2/BiasAdd"
  718. }
  719. node {
  720. name: "layer_256_1_conv2/Conv2D"
  721. op: "Conv2D"
  722. input: "Relu_5"
  723. input: "layer_256_1_conv2/weights"
  724. attr {
  725. key: "dilations"
  726. value {
  727. list {
  728. i: 1
  729. i: 1
  730. i: 1
  731. i: 1
  732. }
  733. }
  734. }
  735. attr {
  736. key: "padding"
  737. value {
  738. s: "SAME"
  739. }
  740. }
  741. attr {
  742. key: "strides"
  743. value {
  744. list {
  745. i: 1
  746. i: 1
  747. i: 1
  748. i: 1
  749. }
  750. }
  751. }
  752. }
  753. node {
  754. name: "add_2"
  755. op: "Add"
  756. input: "layer_256_1_conv2/Conv2D"
  757. input: "layer_256_1_conv_expand/Conv2D"
  758. }
  759. node {
  760. name: "layer_512_1_bn1/FusedBatchNorm"
  761. op: "FusedBatchNorm"
  762. input: "add_2"
  763. input: "layer_512_1_bn1/gamma"
  764. input: "layer_512_1_bn1/beta"
  765. input: "layer_512_1_bn1/mean"
  766. input: "layer_512_1_bn1/std"
  767. attr {
  768. key: "epsilon"
  769. value {
  770. f: 1.00099996416e-05
  771. }
  772. }
  773. }
  774. node {
  775. name: "layer_512_1_scale1/Mul"
  776. op: "Mul"
  777. input: "layer_512_1_bn1/FusedBatchNorm"
  778. input: "layer_512_1_scale1/mul"
  779. }
  780. node {
  781. name: "layer_512_1_scale1/BiasAdd"
  782. op: "BiasAdd"
  783. input: "layer_512_1_scale1/Mul"
  784. input: "layer_512_1_scale1/add"
  785. }
  786. node {
  787. name: "Relu_6"
  788. op: "Relu"
  789. input: "layer_512_1_scale1/BiasAdd"
  790. }
  791. node {
  792. name: "layer_512_1_conv_expand_h/Conv2D"
  793. op: "Conv2D"
  794. input: "Relu_6"
  795. input: "layer_512_1_conv_expand_h/weights"
  796. attr {
  797. key: "dilations"
  798. value {
  799. list {
  800. i: 1
  801. i: 1
  802. i: 1
  803. i: 1
  804. }
  805. }
  806. }
  807. attr {
  808. key: "padding"
  809. value {
  810. s: "SAME"
  811. }
  812. }
  813. attr {
  814. key: "strides"
  815. value {
  816. list {
  817. i: 1
  818. i: 1
  819. i: 1
  820. i: 1
  821. }
  822. }
  823. }
  824. }
  825. node {
  826. name: "layer_512_1_conv1_h/Conv2D"
  827. op: "Conv2D"
  828. input: "Relu_6"
  829. input: "layer_512_1_conv1_h/weights"
  830. attr {
  831. key: "dilations"
  832. value {
  833. list {
  834. i: 1
  835. i: 1
  836. i: 1
  837. i: 1
  838. }
  839. }
  840. }
  841. attr {
  842. key: "padding"
  843. value {
  844. s: "SAME"
  845. }
  846. }
  847. attr {
  848. key: "strides"
  849. value {
  850. list {
  851. i: 1
  852. i: 1
  853. i: 1
  854. i: 1
  855. }
  856. }
  857. }
  858. }
  859. node {
  860. name: "layer_512_1_bn2_h/FusedBatchNorm"
  861. op: "BiasAdd"
  862. input: "layer_512_1_conv1_h/Conv2D"
  863. input: "layer_512_1_conv1_h/Conv2D_bn_offset"
  864. }
  865. node {
  866. name: "layer_512_1_scale2_h/Mul"
  867. op: "Mul"
  868. input: "layer_512_1_bn2_h/FusedBatchNorm"
  869. input: "layer_512_1_scale2_h/mul"
  870. }
  871. node {
  872. name: "layer_512_1_scale2_h/BiasAdd"
  873. op: "BiasAdd"
  874. input: "layer_512_1_scale2_h/Mul"
  875. input: "layer_512_1_scale2_h/add"
  876. }
  877. node {
  878. name: "Relu_7"
  879. op: "Relu"
  880. input: "layer_512_1_scale2_h/BiasAdd"
  881. }
  882. node {
  883. name: "layer_512_1_conv2_h/convolution/SpaceToBatchND"
  884. op: "SpaceToBatchND"
  885. input: "Relu_7"
  886. input: "layer_512_1_conv2_h/convolution/SpaceToBatchND/block_shape"
  887. input: "layer_512_1_conv2_h/convolution/SpaceToBatchND/paddings"
  888. }
  889. node {
  890. name: "layer_512_1_conv2_h/convolution"
  891. op: "Conv2D"
  892. input: "layer_512_1_conv2_h/convolution/SpaceToBatchND"
  893. input: "layer_512_1_conv2_h/weights"
  894. attr {
  895. key: "dilations"
  896. value {
  897. list {
  898. i: 1
  899. i: 1
  900. i: 1
  901. i: 1
  902. }
  903. }
  904. }
  905. attr {
  906. key: "padding"
  907. value {
  908. s: "VALID"
  909. }
  910. }
  911. attr {
  912. key: "strides"
  913. value {
  914. list {
  915. i: 1
  916. i: 1
  917. i: 1
  918. i: 1
  919. }
  920. }
  921. }
  922. }
  923. node {
  924. name: "layer_512_1_conv2_h/convolution/BatchToSpaceND"
  925. op: "BatchToSpaceND"
  926. input: "layer_512_1_conv2_h/convolution"
  927. input: "layer_512_1_conv2_h/convolution/BatchToSpaceND/block_shape"
  928. input: "layer_512_1_conv2_h/convolution/BatchToSpaceND/crops"
  929. }
  930. node {
  931. name: "add_3"
  932. op: "Add"
  933. input: "layer_512_1_conv2_h/convolution/BatchToSpaceND"
  934. input: "layer_512_1_conv_expand_h/Conv2D"
  935. }
  936. node {
  937. name: "last_bn_h/FusedBatchNorm"
  938. op: "FusedBatchNorm"
  939. input: "add_3"
  940. input: "last_bn_h/gamma"
  941. input: "last_bn_h/beta"
  942. input: "last_bn_h/mean"
  943. input: "last_bn_h/std"
  944. attr {
  945. key: "epsilon"
  946. value {
  947. f: 1.00099996416e-05
  948. }
  949. }
  950. }
  951. node {
  952. name: "last_scale_h/Mul"
  953. op: "Mul"
  954. input: "last_bn_h/FusedBatchNorm"
  955. input: "last_scale_h/mul"
  956. }
  957. node {
  958. name: "last_scale_h/BiasAdd"
  959. op: "BiasAdd"
  960. input: "last_scale_h/Mul"
  961. input: "last_scale_h/add"
  962. }
  963. node {
  964. name: "last_relu"
  965. op: "Relu"
  966. input: "last_scale_h/BiasAdd"
  967. }
  968. node {
  969. name: "conv6_1_h/Conv2D"
  970. op: "Conv2D"
  971. input: "last_relu"
  972. input: "conv6_1_h/weights"
  973. attr {
  974. key: "dilations"
  975. value {
  976. list {
  977. i: 1
  978. i: 1
  979. i: 1
  980. i: 1
  981. }
  982. }
  983. }
  984. attr {
  985. key: "padding"
  986. value {
  987. s: "SAME"
  988. }
  989. }
  990. attr {
  991. key: "strides"
  992. value {
  993. list {
  994. i: 1
  995. i: 1
  996. i: 1
  997. i: 1
  998. }
  999. }
  1000. }
  1001. }
  1002. node {
  1003. name: "conv6_1_h/BiasAdd"
  1004. op: "BiasAdd"
  1005. input: "conv6_1_h/Conv2D"
  1006. input: "conv6_1_h/bias"
  1007. }
  1008. node {
  1009. name: "conv6_1_h/Relu"
  1010. op: "Relu"
  1011. input: "conv6_1_h/BiasAdd"
  1012. }
  1013. node {
  1014. name: "conv6_2_h/Conv2D"
  1015. op: "Conv2D"
  1016. input: "conv6_1_h/Relu"
  1017. input: "conv6_2_h/weights"
  1018. attr {
  1019. key: "dilations"
  1020. value {
  1021. list {
  1022. i: 1
  1023. i: 1
  1024. i: 1
  1025. i: 1
  1026. }
  1027. }
  1028. }
  1029. attr {
  1030. key: "padding"
  1031. value {
  1032. s: "SAME"
  1033. }
  1034. }
  1035. attr {
  1036. key: "strides"
  1037. value {
  1038. list {
  1039. i: 1
  1040. i: 2
  1041. i: 2
  1042. i: 1
  1043. }
  1044. }
  1045. }
  1046. }
  1047. node {
  1048. name: "conv6_2_h/BiasAdd"
  1049. op: "BiasAdd"
  1050. input: "conv6_2_h/Conv2D"
  1051. input: "conv6_2_h/bias"
  1052. }
  1053. node {
  1054. name: "conv6_2_h/Relu"
  1055. op: "Relu"
  1056. input: "conv6_2_h/BiasAdd"
  1057. }
  1058. node {
  1059. name: "conv7_1_h/Conv2D"
  1060. op: "Conv2D"
  1061. input: "conv6_2_h/Relu"
  1062. input: "conv7_1_h/weights"
  1063. attr {
  1064. key: "dilations"
  1065. value {
  1066. list {
  1067. i: 1
  1068. i: 1
  1069. i: 1
  1070. i: 1
  1071. }
  1072. }
  1073. }
  1074. attr {
  1075. key: "padding"
  1076. value {
  1077. s: "SAME"
  1078. }
  1079. }
  1080. attr {
  1081. key: "strides"
  1082. value {
  1083. list {
  1084. i: 1
  1085. i: 1
  1086. i: 1
  1087. i: 1
  1088. }
  1089. }
  1090. }
  1091. }
  1092. node {
  1093. name: "conv7_1_h/BiasAdd"
  1094. op: "BiasAdd"
  1095. input: "conv7_1_h/Conv2D"
  1096. input: "conv7_1_h/bias"
  1097. }
  1098. node {
  1099. name: "conv7_1_h/Relu"
  1100. op: "Relu"
  1101. input: "conv7_1_h/BiasAdd"
  1102. }
  1103. node {
  1104. name: "Pad_2"
  1105. op: "SpaceToBatchND"
  1106. input: "conv7_1_h/Relu"
  1107. input: "SpaceToBatchND/block_shape"
  1108. input: "SpaceToBatchND_1/paddings"
  1109. }
  1110. node {
  1111. name: "conv7_2_h/Conv2D"
  1112. op: "Conv2D"
  1113. input: "Pad_2"
  1114. input: "conv7_2_h/weights"
  1115. attr {
  1116. key: "dilations"
  1117. value {
  1118. list {
  1119. i: 1
  1120. i: 1
  1121. i: 1
  1122. i: 1
  1123. }
  1124. }
  1125. }
  1126. attr {
  1127. key: "padding"
  1128. value {
  1129. s: "VALID"
  1130. }
  1131. }
  1132. attr {
  1133. key: "strides"
  1134. value {
  1135. list {
  1136. i: 1
  1137. i: 2
  1138. i: 2
  1139. i: 1
  1140. }
  1141. }
  1142. }
  1143. }
  1144. node {
  1145. name: "conv7_2_h/BiasAdd"
  1146. op: "BiasAdd"
  1147. input: "conv7_2_h/Conv2D"
  1148. input: "conv7_2_h/bias"
  1149. }
  1150. node {
  1151. name: "BatchToSpaceND_2"
  1152. op: "BatchToSpaceND"
  1153. input: "conv7_2_h/BiasAdd"
  1154. }
  1155. node {
  1156. name: "conv7_2_h/Relu"
  1157. op: "Relu"
  1158. input: "BatchToSpaceND_2"
  1159. }
  1160. node {
  1161. name: "conv8_1_h/Conv2D"
  1162. op: "Conv2D"
  1163. input: "conv7_2_h/Relu"
  1164. input: "conv8_1_h/weights"
  1165. attr {
  1166. key: "dilations"
  1167. value {
  1168. list {
  1169. i: 1
  1170. i: 1
  1171. i: 1
  1172. i: 1
  1173. }
  1174. }
  1175. }
  1176. attr {
  1177. key: "padding"
  1178. value {
  1179. s: "SAME"
  1180. }
  1181. }
  1182. attr {
  1183. key: "strides"
  1184. value {
  1185. list {
  1186. i: 1
  1187. i: 1
  1188. i: 1
  1189. i: 1
  1190. }
  1191. }
  1192. }
  1193. }
  1194. node {
  1195. name: "conv8_1_h/BiasAdd"
  1196. op: "BiasAdd"
  1197. input: "conv8_1_h/Conv2D"
  1198. input: "conv8_1_h/bias"
  1199. }
  1200. node {
  1201. name: "conv8_1_h/Relu"
  1202. op: "Relu"
  1203. input: "conv8_1_h/BiasAdd"
  1204. }
  1205. node {
  1206. name: "conv8_2_h/Conv2D"
  1207. op: "Conv2D"
  1208. input: "conv8_1_h/Relu"
  1209. input: "conv8_2_h/weights"
  1210. attr {
  1211. key: "dilations"
  1212. value {
  1213. list {
  1214. i: 1
  1215. i: 1
  1216. i: 1
  1217. i: 1
  1218. }
  1219. }
  1220. }
  1221. attr {
  1222. key: "padding"
  1223. value {
  1224. s: "VALID"
  1225. }
  1226. }
  1227. attr {
  1228. key: "strides"
  1229. value {
  1230. list {
  1231. i: 1
  1232. i: 1
  1233. i: 1
  1234. i: 1
  1235. }
  1236. }
  1237. }
  1238. }
  1239. node {
  1240. name: "conv8_2_h/BiasAdd"
  1241. op: "BiasAdd"
  1242. input: "conv8_2_h/Conv2D"
  1243. input: "conv8_2_h/bias"
  1244. }
  1245. node {
  1246. name: "conv8_2_h/Relu"
  1247. op: "Relu"
  1248. input: "conv8_2_h/BiasAdd"
  1249. }
  1250. node {
  1251. name: "conv9_1_h/Conv2D"
  1252. op: "Conv2D"
  1253. input: "conv8_2_h/Relu"
  1254. input: "conv9_1_h/weights"
  1255. attr {
  1256. key: "dilations"
  1257. value {
  1258. list {
  1259. i: 1
  1260. i: 1
  1261. i: 1
  1262. i: 1
  1263. }
  1264. }
  1265. }
  1266. attr {
  1267. key: "padding"
  1268. value {
  1269. s: "SAME"
  1270. }
  1271. }
  1272. attr {
  1273. key: "strides"
  1274. value {
  1275. list {
  1276. i: 1
  1277. i: 1
  1278. i: 1
  1279. i: 1
  1280. }
  1281. }
  1282. }
  1283. }
  1284. node {
  1285. name: "conv9_1_h/BiasAdd"
  1286. op: "BiasAdd"
  1287. input: "conv9_1_h/Conv2D"
  1288. input: "conv9_1_h/bias"
  1289. }
  1290. node {
  1291. name: "conv9_1_h/Relu"
  1292. op: "Relu"
  1293. input: "conv9_1_h/BiasAdd"
  1294. }
  1295. node {
  1296. name: "conv9_2_h/Conv2D"
  1297. op: "Conv2D"
  1298. input: "conv9_1_h/Relu"
  1299. input: "conv9_2_h/weights"
  1300. attr {
  1301. key: "dilations"
  1302. value {
  1303. list {
  1304. i: 1
  1305. i: 1
  1306. i: 1
  1307. i: 1
  1308. }
  1309. }
  1310. }
  1311. attr {
  1312. key: "padding"
  1313. value {
  1314. s: "VALID"
  1315. }
  1316. }
  1317. attr {
  1318. key: "strides"
  1319. value {
  1320. list {
  1321. i: 1
  1322. i: 1
  1323. i: 1
  1324. i: 1
  1325. }
  1326. }
  1327. }
  1328. }
  1329. node {
  1330. name: "conv9_2_h/BiasAdd"
  1331. op: "BiasAdd"
  1332. input: "conv9_2_h/Conv2D"
  1333. input: "conv9_2_h/bias"
  1334. }
  1335. node {
  1336. name: "conv9_2_h/Relu"
  1337. op: "Relu"
  1338. input: "conv9_2_h/BiasAdd"
  1339. }
  1340. node {
  1341. name: "conv9_2_mbox_loc/Conv2D"
  1342. op: "Conv2D"
  1343. input: "conv9_2_h/Relu"
  1344. input: "conv9_2_mbox_loc/weights"
  1345. attr {
  1346. key: "dilations"
  1347. value {
  1348. list {
  1349. i: 1
  1350. i: 1
  1351. i: 1
  1352. i: 1
  1353. }
  1354. }
  1355. }
  1356. attr {
  1357. key: "padding"
  1358. value {
  1359. s: "SAME"
  1360. }
  1361. }
  1362. attr {
  1363. key: "strides"
  1364. value {
  1365. list {
  1366. i: 1
  1367. i: 1
  1368. i: 1
  1369. i: 1
  1370. }
  1371. }
  1372. }
  1373. }
  1374. node {
  1375. name: "conv9_2_mbox_loc/BiasAdd"
  1376. op: "BiasAdd"
  1377. input: "conv9_2_mbox_loc/Conv2D"
  1378. input: "conv9_2_mbox_loc/bias"
  1379. }
  1380. node {
  1381. name: "flatten_5/Reshape"
  1382. op: "Flatten"
  1383. input: "conv9_2_mbox_loc/BiasAdd"
  1384. }
  1385. node {
  1386. name: "conv9_2_mbox_conf/Conv2D"
  1387. op: "Conv2D"
  1388. input: "conv9_2_h/Relu"
  1389. input: "conv9_2_mbox_conf/weights"
  1390. attr {
  1391. key: "dilations"
  1392. value {
  1393. list {
  1394. i: 1
  1395. i: 1
  1396. i: 1
  1397. i: 1
  1398. }
  1399. }
  1400. }
  1401. attr {
  1402. key: "padding"
  1403. value {
  1404. s: "SAME"
  1405. }
  1406. }
  1407. attr {
  1408. key: "strides"
  1409. value {
  1410. list {
  1411. i: 1
  1412. i: 1
  1413. i: 1
  1414. i: 1
  1415. }
  1416. }
  1417. }
  1418. }
  1419. node {
  1420. name: "conv9_2_mbox_conf/BiasAdd"
  1421. op: "BiasAdd"
  1422. input: "conv9_2_mbox_conf/Conv2D"
  1423. input: "conv9_2_mbox_conf/bias"
  1424. }
  1425. node {
  1426. name: "flatten_11/Reshape"
  1427. op: "Flatten"
  1428. input: "conv9_2_mbox_conf/BiasAdd"
  1429. }
  1430. node {
  1431. name: "conv8_2_mbox_loc/Conv2D"
  1432. op: "Conv2D"
  1433. input: "conv8_2_h/Relu"
  1434. input: "conv8_2_mbox_loc/weights"
  1435. attr {
  1436. key: "dilations"
  1437. value {
  1438. list {
  1439. i: 1
  1440. i: 1
  1441. i: 1
  1442. i: 1
  1443. }
  1444. }
  1445. }
  1446. attr {
  1447. key: "padding"
  1448. value {
  1449. s: "SAME"
  1450. }
  1451. }
  1452. attr {
  1453. key: "strides"
  1454. value {
  1455. list {
  1456. i: 1
  1457. i: 1
  1458. i: 1
  1459. i: 1
  1460. }
  1461. }
  1462. }
  1463. }
  1464. node {
  1465. name: "conv8_2_mbox_loc/BiasAdd"
  1466. op: "BiasAdd"
  1467. input: "conv8_2_mbox_loc/Conv2D"
  1468. input: "conv8_2_mbox_loc/bias"
  1469. }
  1470. node {
  1471. name: "flatten_4/Reshape"
  1472. op: "Flatten"
  1473. input: "conv8_2_mbox_loc/BiasAdd"
  1474. }
  1475. node {
  1476. name: "conv8_2_mbox_conf/Conv2D"
  1477. op: "Conv2D"
  1478. input: "conv8_2_h/Relu"
  1479. input: "conv8_2_mbox_conf/weights"
  1480. attr {
  1481. key: "dilations"
  1482. value {
  1483. list {
  1484. i: 1
  1485. i: 1
  1486. i: 1
  1487. i: 1
  1488. }
  1489. }
  1490. }
  1491. attr {
  1492. key: "padding"
  1493. value {
  1494. s: "SAME"
  1495. }
  1496. }
  1497. attr {
  1498. key: "strides"
  1499. value {
  1500. list {
  1501. i: 1
  1502. i: 1
  1503. i: 1
  1504. i: 1
  1505. }
  1506. }
  1507. }
  1508. }
  1509. node {
  1510. name: "conv8_2_mbox_conf/BiasAdd"
  1511. op: "BiasAdd"
  1512. input: "conv8_2_mbox_conf/Conv2D"
  1513. input: "conv8_2_mbox_conf/bias"
  1514. }
  1515. node {
  1516. name: "flatten_10/Reshape"
  1517. op: "Flatten"
  1518. input: "conv8_2_mbox_conf/BiasAdd"
  1519. }
  1520. node {
  1521. name: "conv7_2_mbox_loc/Conv2D"
  1522. op: "Conv2D"
  1523. input: "conv7_2_h/Relu"
  1524. input: "conv7_2_mbox_loc/weights"
  1525. attr {
  1526. key: "dilations"
  1527. value {
  1528. list {
  1529. i: 1
  1530. i: 1
  1531. i: 1
  1532. i: 1
  1533. }
  1534. }
  1535. }
  1536. attr {
  1537. key: "padding"
  1538. value {
  1539. s: "SAME"
  1540. }
  1541. }
  1542. attr {
  1543. key: "strides"
  1544. value {
  1545. list {
  1546. i: 1
  1547. i: 1
  1548. i: 1
  1549. i: 1
  1550. }
  1551. }
  1552. }
  1553. }
  1554. node {
  1555. name: "conv7_2_mbox_loc/BiasAdd"
  1556. op: "BiasAdd"
  1557. input: "conv7_2_mbox_loc/Conv2D"
  1558. input: "conv7_2_mbox_loc/bias"
  1559. }
  1560. node {
  1561. name: "flatten_3/Reshape"
  1562. op: "Flatten"
  1563. input: "conv7_2_mbox_loc/BiasAdd"
  1564. }
  1565. node {
  1566. name: "conv7_2_mbox_conf/Conv2D"
  1567. op: "Conv2D"
  1568. input: "conv7_2_h/Relu"
  1569. input: "conv7_2_mbox_conf/weights"
  1570. attr {
  1571. key: "dilations"
  1572. value {
  1573. list {
  1574. i: 1
  1575. i: 1
  1576. i: 1
  1577. i: 1
  1578. }
  1579. }
  1580. }
  1581. attr {
  1582. key: "padding"
  1583. value {
  1584. s: "SAME"
  1585. }
  1586. }
  1587. attr {
  1588. key: "strides"
  1589. value {
  1590. list {
  1591. i: 1
  1592. i: 1
  1593. i: 1
  1594. i: 1
  1595. }
  1596. }
  1597. }
  1598. }
  1599. node {
  1600. name: "conv7_2_mbox_conf/BiasAdd"
  1601. op: "BiasAdd"
  1602. input: "conv7_2_mbox_conf/Conv2D"
  1603. input: "conv7_2_mbox_conf/bias"
  1604. }
  1605. node {
  1606. name: "flatten_9/Reshape"
  1607. op: "Flatten"
  1608. input: "conv7_2_mbox_conf/BiasAdd"
  1609. }
  1610. node {
  1611. name: "conv6_2_mbox_loc/Conv2D"
  1612. op: "Conv2D"
  1613. input: "conv6_2_h/Relu"
  1614. input: "conv6_2_mbox_loc/weights"
  1615. attr {
  1616. key: "dilations"
  1617. value {
  1618. list {
  1619. i: 1
  1620. i: 1
  1621. i: 1
  1622. i: 1
  1623. }
  1624. }
  1625. }
  1626. attr {
  1627. key: "padding"
  1628. value {
  1629. s: "SAME"
  1630. }
  1631. }
  1632. attr {
  1633. key: "strides"
  1634. value {
  1635. list {
  1636. i: 1
  1637. i: 1
  1638. i: 1
  1639. i: 1
  1640. }
  1641. }
  1642. }
  1643. }
  1644. node {
  1645. name: "conv6_2_mbox_loc/BiasAdd"
  1646. op: "BiasAdd"
  1647. input: "conv6_2_mbox_loc/Conv2D"
  1648. input: "conv6_2_mbox_loc/bias"
  1649. }
  1650. node {
  1651. name: "flatten_2/Reshape"
  1652. op: "Flatten"
  1653. input: "conv6_2_mbox_loc/BiasAdd"
  1654. }
  1655. node {
  1656. name: "conv6_2_mbox_conf/Conv2D"
  1657. op: "Conv2D"
  1658. input: "conv6_2_h/Relu"
  1659. input: "conv6_2_mbox_conf/weights"
  1660. attr {
  1661. key: "dilations"
  1662. value {
  1663. list {
  1664. i: 1
  1665. i: 1
  1666. i: 1
  1667. i: 1
  1668. }
  1669. }
  1670. }
  1671. attr {
  1672. key: "padding"
  1673. value {
  1674. s: "SAME"
  1675. }
  1676. }
  1677. attr {
  1678. key: "strides"
  1679. value {
  1680. list {
  1681. i: 1
  1682. i: 1
  1683. i: 1
  1684. i: 1
  1685. }
  1686. }
  1687. }
  1688. }
  1689. node {
  1690. name: "conv6_2_mbox_conf/BiasAdd"
  1691. op: "BiasAdd"
  1692. input: "conv6_2_mbox_conf/Conv2D"
  1693. input: "conv6_2_mbox_conf/bias"
  1694. }
  1695. node {
  1696. name: "flatten_8/Reshape"
  1697. op: "Flatten"
  1698. input: "conv6_2_mbox_conf/BiasAdd"
  1699. }
  1700. node {
  1701. name: "fc7_mbox_loc/Conv2D"
  1702. op: "Conv2D"
  1703. input: "last_relu"
  1704. input: "fc7_mbox_loc/weights"
  1705. attr {
  1706. key: "dilations"
  1707. value {
  1708. list {
  1709. i: 1
  1710. i: 1
  1711. i: 1
  1712. i: 1
  1713. }
  1714. }
  1715. }
  1716. attr {
  1717. key: "padding"
  1718. value {
  1719. s: "SAME"
  1720. }
  1721. }
  1722. attr {
  1723. key: "strides"
  1724. value {
  1725. list {
  1726. i: 1
  1727. i: 1
  1728. i: 1
  1729. i: 1
  1730. }
  1731. }
  1732. }
  1733. }
  1734. node {
  1735. name: "fc7_mbox_loc/BiasAdd"
  1736. op: "BiasAdd"
  1737. input: "fc7_mbox_loc/Conv2D"
  1738. input: "fc7_mbox_loc/bias"
  1739. }
  1740. node {
  1741. name: "flatten_1/Reshape"
  1742. op: "Flatten"
  1743. input: "fc7_mbox_loc/BiasAdd"
  1744. }
  1745. node {
  1746. name: "mbox_loc"
  1747. op: "ConcatV2"
  1748. input: "flatten/Reshape"
  1749. input: "flatten_1/Reshape"
  1750. input: "flatten_2/Reshape"
  1751. input: "flatten_3/Reshape"
  1752. input: "flatten_4/Reshape"
  1753. input: "flatten_5/Reshape"
  1754. input: "mbox_loc/axis"
  1755. }
  1756. node {
  1757. name: "fc7_mbox_conf/Conv2D"
  1758. op: "Conv2D"
  1759. input: "last_relu"
  1760. input: "fc7_mbox_conf/weights"
  1761. attr {
  1762. key: "dilations"
  1763. value {
  1764. list {
  1765. i: 1
  1766. i: 1
  1767. i: 1
  1768. i: 1
  1769. }
  1770. }
  1771. }
  1772. attr {
  1773. key: "padding"
  1774. value {
  1775. s: "SAME"
  1776. }
  1777. }
  1778. attr {
  1779. key: "strides"
  1780. value {
  1781. list {
  1782. i: 1
  1783. i: 1
  1784. i: 1
  1785. i: 1
  1786. }
  1787. }
  1788. }
  1789. }
  1790. node {
  1791. name: "fc7_mbox_conf/BiasAdd"
  1792. op: "BiasAdd"
  1793. input: "fc7_mbox_conf/Conv2D"
  1794. input: "fc7_mbox_conf/bias"
  1795. }
  1796. node {
  1797. name: "flatten_7/Reshape"
  1798. op: "Flatten"
  1799. input: "fc7_mbox_conf/BiasAdd"
  1800. }
  1801. node {
  1802. name: "mbox_conf"
  1803. op: "ConcatV2"
  1804. input: "flatten_6/Reshape"
  1805. input: "flatten_7/Reshape"
  1806. input: "flatten_8/Reshape"
  1807. input: "flatten_9/Reshape"
  1808. input: "flatten_10/Reshape"
  1809. input: "flatten_11/Reshape"
  1810. input: "mbox_conf/axis"
  1811. }
  1812. node {
  1813. name: "mbox_conf_reshape"
  1814. op: "Reshape"
  1815. input: "mbox_conf"
  1816. input: "reshape_before_softmax"
  1817. }
  1818. node {
  1819. name: "mbox_conf_softmax"
  1820. op: "Softmax"
  1821. input: "mbox_conf_reshape"
  1822. attr {
  1823. key: "axis"
  1824. value {
  1825. i: 2
  1826. }
  1827. }
  1828. }
  1829. node {
  1830. name: "mbox_conf_flatten"
  1831. op: "Flatten"
  1832. input: "mbox_conf_softmax"
  1833. }
  1834. node {
  1835. name: "PriorBox_0"
  1836. op: "PriorBox"
  1837. input: "conv4_3_norm/mul_1"
  1838. input: "data"
  1839. attr {
  1840. key: "aspect_ratio"
  1841. value {
  1842. tensor {
  1843. dtype: DT_FLOAT
  1844. tensor_shape {
  1845. dim {
  1846. size: 1
  1847. }
  1848. }
  1849. float_val: 2.0
  1850. }
  1851. }
  1852. }
  1853. attr {
  1854. key: "clip"
  1855. value {
  1856. b: false
  1857. }
  1858. }
  1859. attr {
  1860. key: "flip"
  1861. value {
  1862. b: true
  1863. }
  1864. }
  1865. attr {
  1866. key: "max_size"
  1867. value {
  1868. i: 60
  1869. }
  1870. }
  1871. attr {
  1872. key: "min_size"
  1873. value {
  1874. i: 30
  1875. }
  1876. }
  1877. attr {
  1878. key: "offset"
  1879. value {
  1880. f: 0.5
  1881. }
  1882. }
  1883. attr {
  1884. key: "step"
  1885. value {
  1886. f: 8.0
  1887. }
  1888. }
  1889. attr {
  1890. key: "variance"
  1891. value {
  1892. tensor {
  1893. dtype: DT_FLOAT
  1894. tensor_shape {
  1895. dim {
  1896. size: 4
  1897. }
  1898. }
  1899. float_val: 0.10000000149
  1900. float_val: 0.10000000149
  1901. float_val: 0.20000000298
  1902. float_val: 0.20000000298
  1903. }
  1904. }
  1905. }
  1906. }
  1907. node {
  1908. name: "PriorBox_1"
  1909. op: "PriorBox"
  1910. input: "last_relu"
  1911. input: "data"
  1912. attr {
  1913. key: "aspect_ratio"
  1914. value {
  1915. tensor {
  1916. dtype: DT_FLOAT
  1917. tensor_shape {
  1918. dim {
  1919. size: 2
  1920. }
  1921. }
  1922. float_val: 2.0
  1923. float_val: 3.0
  1924. }
  1925. }
  1926. }
  1927. attr {
  1928. key: "clip"
  1929. value {
  1930. b: false
  1931. }
  1932. }
  1933. attr {
  1934. key: "flip"
  1935. value {
  1936. b: true
  1937. }
  1938. }
  1939. attr {
  1940. key: "max_size"
  1941. value {
  1942. i: 111
  1943. }
  1944. }
  1945. attr {
  1946. key: "min_size"
  1947. value {
  1948. i: 60
  1949. }
  1950. }
  1951. attr {
  1952. key: "offset"
  1953. value {
  1954. f: 0.5
  1955. }
  1956. }
  1957. attr {
  1958. key: "step"
  1959. value {
  1960. f: 16.0
  1961. }
  1962. }
  1963. attr {
  1964. key: "variance"
  1965. value {
  1966. tensor {
  1967. dtype: DT_FLOAT
  1968. tensor_shape {
  1969. dim {
  1970. size: 4
  1971. }
  1972. }
  1973. float_val: 0.10000000149
  1974. float_val: 0.10000000149
  1975. float_val: 0.20000000298
  1976. float_val: 0.20000000298
  1977. }
  1978. }
  1979. }
  1980. }
  1981. node {
  1982. name: "PriorBox_2"
  1983. op: "PriorBox"
  1984. input: "conv6_2_h/Relu"
  1985. input: "data"
  1986. attr {
  1987. key: "aspect_ratio"
  1988. value {
  1989. tensor {
  1990. dtype: DT_FLOAT
  1991. tensor_shape {
  1992. dim {
  1993. size: 2
  1994. }
  1995. }
  1996. float_val: 2.0
  1997. float_val: 3.0
  1998. }
  1999. }
  2000. }
  2001. attr {
  2002. key: "clip"
  2003. value {
  2004. b: false
  2005. }
  2006. }
  2007. attr {
  2008. key: "flip"
  2009. value {
  2010. b: true
  2011. }
  2012. }
  2013. attr {
  2014. key: "max_size"
  2015. value {
  2016. i: 162
  2017. }
  2018. }
  2019. attr {
  2020. key: "min_size"
  2021. value {
  2022. i: 111
  2023. }
  2024. }
  2025. attr {
  2026. key: "offset"
  2027. value {
  2028. f: 0.5
  2029. }
  2030. }
  2031. attr {
  2032. key: "step"
  2033. value {
  2034. f: 32.0
  2035. }
  2036. }
  2037. attr {
  2038. key: "variance"
  2039. value {
  2040. tensor {
  2041. dtype: DT_FLOAT
  2042. tensor_shape {
  2043. dim {
  2044. size: 4
  2045. }
  2046. }
  2047. float_val: 0.10000000149
  2048. float_val: 0.10000000149
  2049. float_val: 0.20000000298
  2050. float_val: 0.20000000298
  2051. }
  2052. }
  2053. }
  2054. }
  2055. node {
  2056. name: "PriorBox_3"
  2057. op: "PriorBox"
  2058. input: "conv7_2_h/Relu"
  2059. input: "data"
  2060. attr {
  2061. key: "aspect_ratio"
  2062. value {
  2063. tensor {
  2064. dtype: DT_FLOAT
  2065. tensor_shape {
  2066. dim {
  2067. size: 2
  2068. }
  2069. }
  2070. float_val: 2.0
  2071. float_val: 3.0
  2072. }
  2073. }
  2074. }
  2075. attr {
  2076. key: "clip"
  2077. value {
  2078. b: false
  2079. }
  2080. }
  2081. attr {
  2082. key: "flip"
  2083. value {
  2084. b: true
  2085. }
  2086. }
  2087. attr {
  2088. key: "max_size"
  2089. value {
  2090. i: 213
  2091. }
  2092. }
  2093. attr {
  2094. key: "min_size"
  2095. value {
  2096. i: 162
  2097. }
  2098. }
  2099. attr {
  2100. key: "offset"
  2101. value {
  2102. f: 0.5
  2103. }
  2104. }
  2105. attr {
  2106. key: "step"
  2107. value {
  2108. f: 64.0
  2109. }
  2110. }
  2111. attr {
  2112. key: "variance"
  2113. value {
  2114. tensor {
  2115. dtype: DT_FLOAT
  2116. tensor_shape {
  2117. dim {
  2118. size: 4
  2119. }
  2120. }
  2121. float_val: 0.10000000149
  2122. float_val: 0.10000000149
  2123. float_val: 0.20000000298
  2124. float_val: 0.20000000298
  2125. }
  2126. }
  2127. }
  2128. }
  2129. node {
  2130. name: "PriorBox_4"
  2131. op: "PriorBox"
  2132. input: "conv8_2_h/Relu"
  2133. input: "data"
  2134. attr {
  2135. key: "aspect_ratio"
  2136. value {
  2137. tensor {
  2138. dtype: DT_FLOAT
  2139. tensor_shape {
  2140. dim {
  2141. size: 1
  2142. }
  2143. }
  2144. float_val: 2.0
  2145. }
  2146. }
  2147. }
  2148. attr {
  2149. key: "clip"
  2150. value {
  2151. b: false
  2152. }
  2153. }
  2154. attr {
  2155. key: "flip"
  2156. value {
  2157. b: true
  2158. }
  2159. }
  2160. attr {
  2161. key: "max_size"
  2162. value {
  2163. i: 264
  2164. }
  2165. }
  2166. attr {
  2167. key: "min_size"
  2168. value {
  2169. i: 213
  2170. }
  2171. }
  2172. attr {
  2173. key: "offset"
  2174. value {
  2175. f: 0.5
  2176. }
  2177. }
  2178. attr {
  2179. key: "step"
  2180. value {
  2181. f: 100.0
  2182. }
  2183. }
  2184. attr {
  2185. key: "variance"
  2186. value {
  2187. tensor {
  2188. dtype: DT_FLOAT
  2189. tensor_shape {
  2190. dim {
  2191. size: 4
  2192. }
  2193. }
  2194. float_val: 0.10000000149
  2195. float_val: 0.10000000149
  2196. float_val: 0.20000000298
  2197. float_val: 0.20000000298
  2198. }
  2199. }
  2200. }
  2201. }
  2202. node {
  2203. name: "PriorBox_5"
  2204. op: "PriorBox"
  2205. input: "conv9_2_h/Relu"
  2206. input: "data"
  2207. attr {
  2208. key: "aspect_ratio"
  2209. value {
  2210. tensor {
  2211. dtype: DT_FLOAT
  2212. tensor_shape {
  2213. dim {
  2214. size: 1
  2215. }
  2216. }
  2217. float_val: 2.0
  2218. }
  2219. }
  2220. }
  2221. attr {
  2222. key: "clip"
  2223. value {
  2224. b: false
  2225. }
  2226. }
  2227. attr {
  2228. key: "flip"
  2229. value {
  2230. b: true
  2231. }
  2232. }
  2233. attr {
  2234. key: "max_size"
  2235. value {
  2236. i: 315
  2237. }
  2238. }
  2239. attr {
  2240. key: "min_size"
  2241. value {
  2242. i: 264
  2243. }
  2244. }
  2245. attr {
  2246. key: "offset"
  2247. value {
  2248. f: 0.5
  2249. }
  2250. }
  2251. attr {
  2252. key: "step"
  2253. value {
  2254. f: 300.0
  2255. }
  2256. }
  2257. attr {
  2258. key: "variance"
  2259. value {
  2260. tensor {
  2261. dtype: DT_FLOAT
  2262. tensor_shape {
  2263. dim {
  2264. size: 4
  2265. }
  2266. }
  2267. float_val: 0.10000000149
  2268. float_val: 0.10000000149
  2269. float_val: 0.20000000298
  2270. float_val: 0.20000000298
  2271. }
  2272. }
  2273. }
  2274. }
  2275. node {
  2276. name: "mbox_priorbox"
  2277. op: "ConcatV2"
  2278. input: "PriorBox_0"
  2279. input: "PriorBox_1"
  2280. input: "PriorBox_2"
  2281. input: "PriorBox_3"
  2282. input: "PriorBox_4"
  2283. input: "PriorBox_5"
  2284. input: "mbox_loc/axis"
  2285. }
  2286. node {
  2287. name: "detection_out"
  2288. op: "DetectionOutput"
  2289. input: "mbox_loc"
  2290. input: "mbox_conf_flatten"
  2291. input: "mbox_priorbox"
  2292. attr {
  2293. key: "background_label_id"
  2294. value {
  2295. i: 0
  2296. }
  2297. }
  2298. attr {
  2299. key: "code_type"
  2300. value {
  2301. s: "CENTER_SIZE"
  2302. }
  2303. }
  2304. attr {
  2305. key: "confidence_threshold"
  2306. value {
  2307. f: 0.00999999977648
  2308. }
  2309. }
  2310. attr {
  2311. key: "keep_top_k"
  2312. value {
  2313. i: 200
  2314. }
  2315. }
  2316. attr {
  2317. key: "nms_threshold"
  2318. value {
  2319. f: 0.449999988079
  2320. }
  2321. }
  2322. attr {
  2323. key: "num_classes"
  2324. value {
  2325. i: 2
  2326. }
  2327. }
  2328. attr {
  2329. key: "share_location"
  2330. value {
  2331. b: true
  2332. }
  2333. }
  2334. attr {
  2335. key: "top_k"
  2336. value {
  2337. i: 400
  2338. }
  2339. }
  2340. attr {
  2341. key: "clip"
  2342. value {
  2343. b: true
  2344. }
  2345. }
  2346. }
  2347. node {
  2348. name: "reshape_before_softmax"
  2349. op: "Const"
  2350. attr {
  2351. key: "value"
  2352. value {
  2353. tensor {
  2354. dtype: DT_INT32
  2355. tensor_shape {
  2356. dim {
  2357. size: 3
  2358. }
  2359. }
  2360. int_val: 0
  2361. int_val: -1
  2362. int_val: 2
  2363. }
  2364. }
  2365. }
  2366. }
  2367. library {
  2368. }