deploy_lowres.prototxt 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790
  1. # This file is based on deploy.prototxt but might be used for input resolution less than 300x300
  2. input: "data"
  3. input_shape {
  4. dim: 1
  5. dim: 3
  6. dim: 300
  7. dim: 300
  8. }
  9. layer {
  10. name: "data_bn"
  11. type: "BatchNorm"
  12. bottom: "data"
  13. top: "data_bn"
  14. param {
  15. lr_mult: 0.0
  16. }
  17. param {
  18. lr_mult: 0.0
  19. }
  20. param {
  21. lr_mult: 0.0
  22. }
  23. }
  24. layer {
  25. name: "data_scale"
  26. type: "Scale"
  27. bottom: "data_bn"
  28. top: "data_bn"
  29. param {
  30. lr_mult: 1.0
  31. decay_mult: 1.0
  32. }
  33. param {
  34. lr_mult: 2.0
  35. decay_mult: 1.0
  36. }
  37. scale_param {
  38. bias_term: true
  39. }
  40. }
  41. layer {
  42. name: "conv1_h"
  43. type: "Convolution"
  44. bottom: "data_bn"
  45. top: "conv1_h"
  46. param {
  47. lr_mult: 1.0
  48. decay_mult: 1.0
  49. }
  50. param {
  51. lr_mult: 2.0
  52. decay_mult: 1.0
  53. }
  54. convolution_param {
  55. num_output: 32
  56. pad: 3
  57. kernel_size: 7
  58. stride: 2
  59. weight_filler {
  60. type: "msra"
  61. variance_norm: FAN_OUT
  62. }
  63. bias_filler {
  64. type: "constant"
  65. value: 0.0
  66. }
  67. }
  68. }
  69. layer {
  70. name: "conv1_bn_h"
  71. type: "BatchNorm"
  72. bottom: "conv1_h"
  73. top: "conv1_h"
  74. param {
  75. lr_mult: 0.0
  76. }
  77. param {
  78. lr_mult: 0.0
  79. }
  80. param {
  81. lr_mult: 0.0
  82. }
  83. }
  84. layer {
  85. name: "conv1_scale_h"
  86. type: "Scale"
  87. bottom: "conv1_h"
  88. top: "conv1_h"
  89. param {
  90. lr_mult: 1.0
  91. decay_mult: 1.0
  92. }
  93. param {
  94. lr_mult: 2.0
  95. decay_mult: 1.0
  96. }
  97. scale_param {
  98. bias_term: true
  99. }
  100. }
  101. layer {
  102. name: "conv1_relu"
  103. type: "ReLU"
  104. bottom: "conv1_h"
  105. top: "conv1_h"
  106. }
  107. layer {
  108. name: "conv1_pool"
  109. type: "Pooling"
  110. bottom: "conv1_h"
  111. top: "conv1_pool"
  112. pooling_param {
  113. kernel_size: 3
  114. stride: 2
  115. }
  116. }
  117. layer {
  118. name: "layer_64_1_conv1_h"
  119. type: "Convolution"
  120. bottom: "conv1_pool"
  121. top: "layer_64_1_conv1_h"
  122. param {
  123. lr_mult: 1.0
  124. decay_mult: 1.0
  125. }
  126. convolution_param {
  127. num_output: 32
  128. bias_term: false
  129. pad: 1
  130. kernel_size: 3
  131. stride: 1
  132. weight_filler {
  133. type: "msra"
  134. }
  135. bias_filler {
  136. type: "constant"
  137. value: 0.0
  138. }
  139. }
  140. }
  141. layer {
  142. name: "layer_64_1_bn2_h"
  143. type: "BatchNorm"
  144. bottom: "layer_64_1_conv1_h"
  145. top: "layer_64_1_conv1_h"
  146. param {
  147. lr_mult: 0.0
  148. }
  149. param {
  150. lr_mult: 0.0
  151. }
  152. param {
  153. lr_mult: 0.0
  154. }
  155. }
  156. layer {
  157. name: "layer_64_1_scale2_h"
  158. type: "Scale"
  159. bottom: "layer_64_1_conv1_h"
  160. top: "layer_64_1_conv1_h"
  161. param {
  162. lr_mult: 1.0
  163. decay_mult: 1.0
  164. }
  165. param {
  166. lr_mult: 2.0
  167. decay_mult: 1.0
  168. }
  169. scale_param {
  170. bias_term: true
  171. }
  172. }
  173. layer {
  174. name: "layer_64_1_relu2"
  175. type: "ReLU"
  176. bottom: "layer_64_1_conv1_h"
  177. top: "layer_64_1_conv1_h"
  178. }
  179. layer {
  180. name: "layer_64_1_conv2_h"
  181. type: "Convolution"
  182. bottom: "layer_64_1_conv1_h"
  183. top: "layer_64_1_conv2_h"
  184. param {
  185. lr_mult: 1.0
  186. decay_mult: 1.0
  187. }
  188. convolution_param {
  189. num_output: 32
  190. bias_term: false
  191. pad: 1
  192. kernel_size: 3
  193. stride: 1
  194. weight_filler {
  195. type: "msra"
  196. }
  197. bias_filler {
  198. type: "constant"
  199. value: 0.0
  200. }
  201. }
  202. }
  203. layer {
  204. name: "layer_64_1_sum"
  205. type: "Eltwise"
  206. bottom: "layer_64_1_conv2_h"
  207. bottom: "conv1_pool"
  208. top: "layer_64_1_sum"
  209. }
  210. layer {
  211. name: "layer_128_1_bn1_h"
  212. type: "BatchNorm"
  213. bottom: "layer_64_1_sum"
  214. top: "layer_128_1_bn1_h"
  215. param {
  216. lr_mult: 0.0
  217. }
  218. param {
  219. lr_mult: 0.0
  220. }
  221. param {
  222. lr_mult: 0.0
  223. }
  224. }
  225. layer {
  226. name: "layer_128_1_scale1_h"
  227. type: "Scale"
  228. bottom: "layer_128_1_bn1_h"
  229. top: "layer_128_1_bn1_h"
  230. param {
  231. lr_mult: 1.0
  232. decay_mult: 1.0
  233. }
  234. param {
  235. lr_mult: 2.0
  236. decay_mult: 1.0
  237. }
  238. scale_param {
  239. bias_term: true
  240. }
  241. }
  242. layer {
  243. name: "layer_128_1_relu1"
  244. type: "ReLU"
  245. bottom: "layer_128_1_bn1_h"
  246. top: "layer_128_1_bn1_h"
  247. }
  248. layer {
  249. name: "layer_128_1_conv1_h"
  250. type: "Convolution"
  251. bottom: "layer_128_1_bn1_h"
  252. top: "layer_128_1_conv1_h"
  253. param {
  254. lr_mult: 1.0
  255. decay_mult: 1.0
  256. }
  257. convolution_param {
  258. num_output: 128
  259. bias_term: false
  260. pad: 1
  261. kernel_size: 3
  262. stride: 2
  263. weight_filler {
  264. type: "msra"
  265. }
  266. bias_filler {
  267. type: "constant"
  268. value: 0.0
  269. }
  270. }
  271. }
  272. layer {
  273. name: "layer_128_1_bn2"
  274. type: "BatchNorm"
  275. bottom: "layer_128_1_conv1_h"
  276. top: "layer_128_1_conv1_h"
  277. param {
  278. lr_mult: 0.0
  279. }
  280. param {
  281. lr_mult: 0.0
  282. }
  283. param {
  284. lr_mult: 0.0
  285. }
  286. }
  287. layer {
  288. name: "layer_128_1_scale2"
  289. type: "Scale"
  290. bottom: "layer_128_1_conv1_h"
  291. top: "layer_128_1_conv1_h"
  292. param {
  293. lr_mult: 1.0
  294. decay_mult: 1.0
  295. }
  296. param {
  297. lr_mult: 2.0
  298. decay_mult: 1.0
  299. }
  300. scale_param {
  301. bias_term: true
  302. }
  303. }
  304. layer {
  305. name: "layer_128_1_relu2"
  306. type: "ReLU"
  307. bottom: "layer_128_1_conv1_h"
  308. top: "layer_128_1_conv1_h"
  309. }
  310. layer {
  311. name: "layer_128_1_conv2"
  312. type: "Convolution"
  313. bottom: "layer_128_1_conv1_h"
  314. top: "layer_128_1_conv2"
  315. param {
  316. lr_mult: 1.0
  317. decay_mult: 1.0
  318. }
  319. convolution_param {
  320. num_output: 128
  321. bias_term: false
  322. pad: 1
  323. kernel_size: 3
  324. stride: 1
  325. weight_filler {
  326. type: "msra"
  327. }
  328. bias_filler {
  329. type: "constant"
  330. value: 0.0
  331. }
  332. }
  333. }
  334. layer {
  335. name: "layer_128_1_conv_expand_h"
  336. type: "Convolution"
  337. bottom: "layer_128_1_bn1_h"
  338. top: "layer_128_1_conv_expand_h"
  339. param {
  340. lr_mult: 1.0
  341. decay_mult: 1.0
  342. }
  343. convolution_param {
  344. num_output: 128
  345. bias_term: false
  346. pad: 0
  347. kernel_size: 1
  348. stride: 2
  349. weight_filler {
  350. type: "msra"
  351. }
  352. bias_filler {
  353. type: "constant"
  354. value: 0.0
  355. }
  356. }
  357. }
  358. layer {
  359. name: "layer_128_1_sum"
  360. type: "Eltwise"
  361. bottom: "layer_128_1_conv2"
  362. bottom: "layer_128_1_conv_expand_h"
  363. top: "layer_128_1_sum"
  364. }
  365. layer {
  366. name: "layer_256_1_bn1"
  367. type: "BatchNorm"
  368. bottom: "layer_128_1_sum"
  369. top: "layer_256_1_bn1"
  370. param {
  371. lr_mult: 0.0
  372. }
  373. param {
  374. lr_mult: 0.0
  375. }
  376. param {
  377. lr_mult: 0.0
  378. }
  379. }
  380. layer {
  381. name: "layer_256_1_scale1"
  382. type: "Scale"
  383. bottom: "layer_256_1_bn1"
  384. top: "layer_256_1_bn1"
  385. param {
  386. lr_mult: 1.0
  387. decay_mult: 1.0
  388. }
  389. param {
  390. lr_mult: 2.0
  391. decay_mult: 1.0
  392. }
  393. scale_param {
  394. bias_term: true
  395. }
  396. }
  397. layer {
  398. name: "layer_256_1_relu1"
  399. type: "ReLU"
  400. bottom: "layer_256_1_bn1"
  401. top: "layer_256_1_bn1"
  402. }
  403. layer {
  404. name: "layer_256_1_conv1"
  405. type: "Convolution"
  406. bottom: "layer_256_1_bn1"
  407. top: "layer_256_1_conv1"
  408. param {
  409. lr_mult: 1.0
  410. decay_mult: 1.0
  411. }
  412. convolution_param {
  413. num_output: 256
  414. bias_term: false
  415. pad: 1
  416. kernel_size: 3
  417. stride: 2
  418. weight_filler {
  419. type: "msra"
  420. }
  421. bias_filler {
  422. type: "constant"
  423. value: 0.0
  424. }
  425. }
  426. }
  427. layer {
  428. name: "layer_256_1_bn2"
  429. type: "BatchNorm"
  430. bottom: "layer_256_1_conv1"
  431. top: "layer_256_1_conv1"
  432. param {
  433. lr_mult: 0.0
  434. }
  435. param {
  436. lr_mult: 0.0
  437. }
  438. param {
  439. lr_mult: 0.0
  440. }
  441. }
  442. layer {
  443. name: "layer_256_1_scale2"
  444. type: "Scale"
  445. bottom: "layer_256_1_conv1"
  446. top: "layer_256_1_conv1"
  447. param {
  448. lr_mult: 1.0
  449. decay_mult: 1.0
  450. }
  451. param {
  452. lr_mult: 2.0
  453. decay_mult: 1.0
  454. }
  455. scale_param {
  456. bias_term: true
  457. }
  458. }
  459. layer {
  460. name: "layer_256_1_relu2"
  461. type: "ReLU"
  462. bottom: "layer_256_1_conv1"
  463. top: "layer_256_1_conv1"
  464. }
  465. layer {
  466. name: "layer_256_1_conv2"
  467. type: "Convolution"
  468. bottom: "layer_256_1_conv1"
  469. top: "layer_256_1_conv2"
  470. param {
  471. lr_mult: 1.0
  472. decay_mult: 1.0
  473. }
  474. convolution_param {
  475. num_output: 256
  476. bias_term: false
  477. pad: 1
  478. kernel_size: 3
  479. stride: 1
  480. weight_filler {
  481. type: "msra"
  482. }
  483. bias_filler {
  484. type: "constant"
  485. value: 0.0
  486. }
  487. }
  488. }
  489. layer {
  490. name: "layer_256_1_conv_expand"
  491. type: "Convolution"
  492. bottom: "layer_256_1_bn1"
  493. top: "layer_256_1_conv_expand"
  494. param {
  495. lr_mult: 1.0
  496. decay_mult: 1.0
  497. }
  498. convolution_param {
  499. num_output: 256
  500. bias_term: false
  501. pad: 0
  502. kernel_size: 1
  503. stride: 2
  504. weight_filler {
  505. type: "msra"
  506. }
  507. bias_filler {
  508. type: "constant"
  509. value: 0.0
  510. }
  511. }
  512. }
  513. layer {
  514. name: "layer_256_1_sum"
  515. type: "Eltwise"
  516. bottom: "layer_256_1_conv2"
  517. bottom: "layer_256_1_conv_expand"
  518. top: "layer_256_1_sum"
  519. }
  520. layer {
  521. name: "layer_512_1_bn1"
  522. type: "BatchNorm"
  523. bottom: "layer_256_1_sum"
  524. top: "layer_512_1_bn1"
  525. param {
  526. lr_mult: 0.0
  527. }
  528. param {
  529. lr_mult: 0.0
  530. }
  531. param {
  532. lr_mult: 0.0
  533. }
  534. }
  535. layer {
  536. name: "layer_512_1_scale1"
  537. type: "Scale"
  538. bottom: "layer_512_1_bn1"
  539. top: "layer_512_1_bn1"
  540. param {
  541. lr_mult: 1.0
  542. decay_mult: 1.0
  543. }
  544. param {
  545. lr_mult: 2.0
  546. decay_mult: 1.0
  547. }
  548. scale_param {
  549. bias_term: true
  550. }
  551. }
  552. layer {
  553. name: "layer_512_1_relu1"
  554. type: "ReLU"
  555. bottom: "layer_512_1_bn1"
  556. top: "layer_512_1_bn1"
  557. }
  558. layer {
  559. name: "layer_512_1_conv1_h"
  560. type: "Convolution"
  561. bottom: "layer_512_1_bn1"
  562. top: "layer_512_1_conv1_h"
  563. param {
  564. lr_mult: 1.0
  565. decay_mult: 1.0
  566. }
  567. convolution_param {
  568. num_output: 128
  569. bias_term: false
  570. pad: 1
  571. kernel_size: 3
  572. stride: 1 # 2
  573. weight_filler {
  574. type: "msra"
  575. }
  576. bias_filler {
  577. type: "constant"
  578. value: 0.0
  579. }
  580. }
  581. }
  582. layer {
  583. name: "layer_512_1_bn2_h"
  584. type: "BatchNorm"
  585. bottom: "layer_512_1_conv1_h"
  586. top: "layer_512_1_conv1_h"
  587. param {
  588. lr_mult: 0.0
  589. }
  590. param {
  591. lr_mult: 0.0
  592. }
  593. param {
  594. lr_mult: 0.0
  595. }
  596. }
  597. layer {
  598. name: "layer_512_1_scale2_h"
  599. type: "Scale"
  600. bottom: "layer_512_1_conv1_h"
  601. top: "layer_512_1_conv1_h"
  602. param {
  603. lr_mult: 1.0
  604. decay_mult: 1.0
  605. }
  606. param {
  607. lr_mult: 2.0
  608. decay_mult: 1.0
  609. }
  610. scale_param {
  611. bias_term: true
  612. }
  613. }
  614. layer {
  615. name: "layer_512_1_relu2"
  616. type: "ReLU"
  617. bottom: "layer_512_1_conv1_h"
  618. top: "layer_512_1_conv1_h"
  619. }
  620. layer {
  621. name: "layer_512_1_conv2_h"
  622. type: "Convolution"
  623. bottom: "layer_512_1_conv1_h"
  624. top: "layer_512_1_conv2_h"
  625. param {
  626. lr_mult: 1.0
  627. decay_mult: 1.0
  628. }
  629. convolution_param {
  630. num_output: 256
  631. bias_term: false
  632. pad: 2 # 1
  633. kernel_size: 3
  634. stride: 1
  635. dilation: 2
  636. weight_filler {
  637. type: "msra"
  638. }
  639. bias_filler {
  640. type: "constant"
  641. value: 0.0
  642. }
  643. }
  644. }
  645. layer {
  646. name: "layer_512_1_conv_expand_h"
  647. type: "Convolution"
  648. bottom: "layer_512_1_bn1"
  649. top: "layer_512_1_conv_expand_h"
  650. param {
  651. lr_mult: 1.0
  652. decay_mult: 1.0
  653. }
  654. convolution_param {
  655. num_output: 256
  656. bias_term: false
  657. pad: 0
  658. kernel_size: 1
  659. stride: 1 # 2
  660. weight_filler {
  661. type: "msra"
  662. }
  663. bias_filler {
  664. type: "constant"
  665. value: 0.0
  666. }
  667. }
  668. }
  669. layer {
  670. name: "layer_512_1_sum"
  671. type: "Eltwise"
  672. bottom: "layer_512_1_conv2_h"
  673. bottom: "layer_512_1_conv_expand_h"
  674. top: "layer_512_1_sum"
  675. }
  676. layer {
  677. name: "last_bn_h"
  678. type: "BatchNorm"
  679. bottom: "layer_512_1_sum"
  680. top: "layer_512_1_sum"
  681. param {
  682. lr_mult: 0.0
  683. }
  684. param {
  685. lr_mult: 0.0
  686. }
  687. param {
  688. lr_mult: 0.0
  689. }
  690. }
  691. layer {
  692. name: "last_scale_h"
  693. type: "Scale"
  694. bottom: "layer_512_1_sum"
  695. top: "layer_512_1_sum"
  696. param {
  697. lr_mult: 1.0
  698. decay_mult: 1.0
  699. }
  700. param {
  701. lr_mult: 2.0
  702. decay_mult: 1.0
  703. }
  704. scale_param {
  705. bias_term: true
  706. }
  707. }
  708. layer {
  709. name: "last_relu"
  710. type: "ReLU"
  711. bottom: "layer_512_1_sum"
  712. top: "fc7"
  713. }
  714. layer {
  715. name: "conv6_1_h"
  716. type: "Convolution"
  717. bottom: "fc7"
  718. top: "conv6_1_h"
  719. param {
  720. lr_mult: 1
  721. decay_mult: 1
  722. }
  723. param {
  724. lr_mult: 2
  725. decay_mult: 0
  726. }
  727. convolution_param {
  728. num_output: 128
  729. pad: 0
  730. kernel_size: 1
  731. stride: 1
  732. weight_filler {
  733. type: "xavier"
  734. }
  735. bias_filler {
  736. type: "constant"
  737. value: 0
  738. }
  739. }
  740. }
  741. layer {
  742. name: "conv6_1_relu"
  743. type: "ReLU"
  744. bottom: "conv6_1_h"
  745. top: "conv6_1_h"
  746. }
  747. layer {
  748. name: "conv6_2_h"
  749. type: "Convolution"
  750. bottom: "conv6_1_h"
  751. top: "conv6_2_h"
  752. param {
  753. lr_mult: 1
  754. decay_mult: 1
  755. }
  756. param {
  757. lr_mult: 2
  758. decay_mult: 0
  759. }
  760. convolution_param {
  761. num_output: 256
  762. pad: 1
  763. kernel_size: 3
  764. stride: 2
  765. weight_filler {
  766. type: "xavier"
  767. }
  768. bias_filler {
  769. type: "constant"
  770. value: 0
  771. }
  772. }
  773. }
  774. layer {
  775. name: "conv6_2_relu"
  776. type: "ReLU"
  777. bottom: "conv6_2_h"
  778. top: "conv6_2_h"
  779. }
  780. layer {
  781. name: "conv7_1_h"
  782. type: "Convolution"
  783. bottom: "conv6_2_h"
  784. top: "conv7_1_h"
  785. param {
  786. lr_mult: 1
  787. decay_mult: 1
  788. }
  789. param {
  790. lr_mult: 2
  791. decay_mult: 0
  792. }
  793. convolution_param {
  794. num_output: 64
  795. pad: 0
  796. kernel_size: 1
  797. stride: 1
  798. weight_filler {
  799. type: "xavier"
  800. }
  801. bias_filler {
  802. type: "constant"
  803. value: 0
  804. }
  805. }
  806. }
  807. layer {
  808. name: "conv7_1_relu"
  809. type: "ReLU"
  810. bottom: "conv7_1_h"
  811. top: "conv7_1_h"
  812. }
  813. layer {
  814. name: "conv7_2_h"
  815. type: "Convolution"
  816. bottom: "conv7_1_h"
  817. top: "conv7_2_h"
  818. param {
  819. lr_mult: 1
  820. decay_mult: 1
  821. }
  822. param {
  823. lr_mult: 2
  824. decay_mult: 0
  825. }
  826. convolution_param {
  827. num_output: 128
  828. pad: 1
  829. kernel_size: 3
  830. stride: 2
  831. weight_filler {
  832. type: "xavier"
  833. }
  834. bias_filler {
  835. type: "constant"
  836. value: 0
  837. }
  838. }
  839. }
  840. layer {
  841. name: "conv7_2_relu"
  842. type: "ReLU"
  843. bottom: "conv7_2_h"
  844. top: "conv7_2_h"
  845. }
  846. layer {
  847. name: "conv8_1_h"
  848. type: "Convolution"
  849. bottom: "conv7_2_h"
  850. top: "conv8_1_h"
  851. param {
  852. lr_mult: 1
  853. decay_mult: 1
  854. }
  855. param {
  856. lr_mult: 2
  857. decay_mult: 0
  858. }
  859. convolution_param {
  860. num_output: 64
  861. pad: 0
  862. kernel_size: 1
  863. stride: 1
  864. weight_filler {
  865. type: "xavier"
  866. }
  867. bias_filler {
  868. type: "constant"
  869. value: 0
  870. }
  871. }
  872. }
  873. layer {
  874. name: "conv8_1_relu"
  875. type: "ReLU"
  876. bottom: "conv8_1_h"
  877. top: "conv8_1_h"
  878. }
  879. layer {
  880. name: "conv8_2_h"
  881. type: "Convolution"
  882. bottom: "conv8_1_h"
  883. top: "conv8_2_h"
  884. param {
  885. lr_mult: 1
  886. decay_mult: 1
  887. }
  888. param {
  889. lr_mult: 2
  890. decay_mult: 0
  891. }
  892. convolution_param {
  893. num_output: 128
  894. pad: 0
  895. kernel_size: 3
  896. stride: 1
  897. weight_filler {
  898. type: "xavier"
  899. }
  900. bias_filler {
  901. type: "constant"
  902. value: 0
  903. }
  904. }
  905. }
  906. layer {
  907. name: "conv8_2_relu"
  908. type: "ReLU"
  909. bottom: "conv8_2_h"
  910. top: "conv8_2_h"
  911. }
  912. # layer {
  913. # name: "conv9_1_h"
  914. # type: "Convolution"
  915. # bottom: "conv8_2_h"
  916. # top: "conv9_1_h"
  917. # param {
  918. # lr_mult: 1
  919. # decay_mult: 1
  920. # }
  921. # param {
  922. # lr_mult: 2
  923. # decay_mult: 0
  924. # }
  925. # convolution_param {
  926. # num_output: 64
  927. # pad: 0
  928. # kernel_size: 1
  929. # stride: 1
  930. # weight_filler {
  931. # type: "xavier"
  932. # }
  933. # bias_filler {
  934. # type: "constant"
  935. # value: 0
  936. # }
  937. # }
  938. # }
  939. # layer {
  940. # name: "conv9_1_relu"
  941. # type: "ReLU"
  942. # bottom: "conv9_1_h"
  943. # top: "conv9_1_h"
  944. # }
  945. # layer {
  946. # name: "conv9_2_h"
  947. # type: "Convolution"
  948. # bottom: "conv9_1_h"
  949. # top: "conv9_2_h"
  950. # param {
  951. # lr_mult: 1
  952. # decay_mult: 1
  953. # }
  954. # param {
  955. # lr_mult: 2
  956. # decay_mult: 0
  957. # }
  958. # convolution_param {
  959. # num_output: 128
  960. # pad: 0
  961. # kernel_size: 3
  962. # stride: 1
  963. # weight_filler {
  964. # type: "xavier"
  965. # }
  966. # bias_filler {
  967. # type: "constant"
  968. # value: 0
  969. # }
  970. # }
  971. # }
  972. # layer {
  973. # name: "conv9_2_relu"
  974. # type: "ReLU"
  975. # bottom: "conv9_2_h"
  976. # top: "conv9_2_h"
  977. # }
  978. layer {
  979. name: "conv4_3_norm"
  980. type: "Normalize"
  981. bottom: "layer_256_1_bn1"
  982. top: "conv4_3_norm"
  983. norm_param {
  984. across_spatial: false
  985. scale_filler {
  986. type: "constant"
  987. value: 20
  988. }
  989. channel_shared: false
  990. }
  991. }
  992. layer {
  993. name: "conv4_3_norm_mbox_loc"
  994. type: "Convolution"
  995. bottom: "conv4_3_norm"
  996. top: "conv4_3_norm_mbox_loc"
  997. param {
  998. lr_mult: 1
  999. decay_mult: 1
  1000. }
  1001. param {
  1002. lr_mult: 2
  1003. decay_mult: 0
  1004. }
  1005. convolution_param {
  1006. num_output: 16
  1007. pad: 1
  1008. kernel_size: 3
  1009. stride: 1
  1010. weight_filler {
  1011. type: "xavier"
  1012. }
  1013. bias_filler {
  1014. type: "constant"
  1015. value: 0
  1016. }
  1017. }
  1018. }
  1019. layer {
  1020. name: "conv4_3_norm_mbox_loc_perm"
  1021. type: "Permute"
  1022. bottom: "conv4_3_norm_mbox_loc"
  1023. top: "conv4_3_norm_mbox_loc_perm"
  1024. permute_param {
  1025. order: 0
  1026. order: 2
  1027. order: 3
  1028. order: 1
  1029. }
  1030. }
  1031. layer {
  1032. name: "conv4_3_norm_mbox_loc_flat"
  1033. type: "Flatten"
  1034. bottom: "conv4_3_norm_mbox_loc_perm"
  1035. top: "conv4_3_norm_mbox_loc_flat"
  1036. flatten_param {
  1037. axis: 1
  1038. }
  1039. }
  1040. layer {
  1041. name: "conv4_3_norm_mbox_conf"
  1042. type: "Convolution"
  1043. bottom: "conv4_3_norm"
  1044. top: "conv4_3_norm_mbox_conf"
  1045. param {
  1046. lr_mult: 1
  1047. decay_mult: 1
  1048. }
  1049. param {
  1050. lr_mult: 2
  1051. decay_mult: 0
  1052. }
  1053. convolution_param {
  1054. num_output: 8 # 84
  1055. pad: 1
  1056. kernel_size: 3
  1057. stride: 1
  1058. weight_filler {
  1059. type: "xavier"
  1060. }
  1061. bias_filler {
  1062. type: "constant"
  1063. value: 0
  1064. }
  1065. }
  1066. }
  1067. layer {
  1068. name: "conv4_3_norm_mbox_conf_perm"
  1069. type: "Permute"
  1070. bottom: "conv4_3_norm_mbox_conf"
  1071. top: "conv4_3_norm_mbox_conf_perm"
  1072. permute_param {
  1073. order: 0
  1074. order: 2
  1075. order: 3
  1076. order: 1
  1077. }
  1078. }
  1079. layer {
  1080. name: "conv4_3_norm_mbox_conf_flat"
  1081. type: "Flatten"
  1082. bottom: "conv4_3_norm_mbox_conf_perm"
  1083. top: "conv4_3_norm_mbox_conf_flat"
  1084. flatten_param {
  1085. axis: 1
  1086. }
  1087. }
  1088. layer {
  1089. name: "conv4_3_norm_mbox_priorbox"
  1090. type: "PriorBox"
  1091. bottom: "conv4_3_norm"
  1092. bottom: "data"
  1093. top: "conv4_3_norm_mbox_priorbox"
  1094. prior_box_param {
  1095. min_size: 30.0
  1096. max_size: 60.0
  1097. aspect_ratio: 2
  1098. flip: true
  1099. clip: false
  1100. variance: 0.1
  1101. variance: 0.1
  1102. variance: 0.2
  1103. variance: 0.2
  1104. step: 8
  1105. offset: 0.5
  1106. }
  1107. }
  1108. layer {
  1109. name: "fc7_mbox_loc"
  1110. type: "Convolution"
  1111. bottom: "fc7"
  1112. top: "fc7_mbox_loc"
  1113. param {
  1114. lr_mult: 1
  1115. decay_mult: 1
  1116. }
  1117. param {
  1118. lr_mult: 2
  1119. decay_mult: 0
  1120. }
  1121. convolution_param {
  1122. num_output: 24
  1123. pad: 1
  1124. kernel_size: 3
  1125. stride: 1
  1126. weight_filler {
  1127. type: "xavier"
  1128. }
  1129. bias_filler {
  1130. type: "constant"
  1131. value: 0
  1132. }
  1133. }
  1134. }
  1135. layer {
  1136. name: "fc7_mbox_loc_perm"
  1137. type: "Permute"
  1138. bottom: "fc7_mbox_loc"
  1139. top: "fc7_mbox_loc_perm"
  1140. permute_param {
  1141. order: 0
  1142. order: 2
  1143. order: 3
  1144. order: 1
  1145. }
  1146. }
  1147. layer {
  1148. name: "fc7_mbox_loc_flat"
  1149. type: "Flatten"
  1150. bottom: "fc7_mbox_loc_perm"
  1151. top: "fc7_mbox_loc_flat"
  1152. flatten_param {
  1153. axis: 1
  1154. }
  1155. }
  1156. layer {
  1157. name: "fc7_mbox_conf"
  1158. type: "Convolution"
  1159. bottom: "fc7"
  1160. top: "fc7_mbox_conf"
  1161. param {
  1162. lr_mult: 1
  1163. decay_mult: 1
  1164. }
  1165. param {
  1166. lr_mult: 2
  1167. decay_mult: 0
  1168. }
  1169. convolution_param {
  1170. num_output: 12 # 126
  1171. pad: 1
  1172. kernel_size: 3
  1173. stride: 1
  1174. weight_filler {
  1175. type: "xavier"
  1176. }
  1177. bias_filler {
  1178. type: "constant"
  1179. value: 0
  1180. }
  1181. }
  1182. }
  1183. layer {
  1184. name: "fc7_mbox_conf_perm"
  1185. type: "Permute"
  1186. bottom: "fc7_mbox_conf"
  1187. top: "fc7_mbox_conf_perm"
  1188. permute_param {
  1189. order: 0
  1190. order: 2
  1191. order: 3
  1192. order: 1
  1193. }
  1194. }
  1195. layer {
  1196. name: "fc7_mbox_conf_flat"
  1197. type: "Flatten"
  1198. bottom: "fc7_mbox_conf_perm"
  1199. top: "fc7_mbox_conf_flat"
  1200. flatten_param {
  1201. axis: 1
  1202. }
  1203. }
  1204. layer {
  1205. name: "fc7_mbox_priorbox"
  1206. type: "PriorBox"
  1207. bottom: "fc7"
  1208. bottom: "data"
  1209. top: "fc7_mbox_priorbox"
  1210. prior_box_param {
  1211. min_size: 60.0
  1212. max_size: 111.0
  1213. aspect_ratio: 2
  1214. aspect_ratio: 3
  1215. flip: true
  1216. clip: false
  1217. variance: 0.1
  1218. variance: 0.1
  1219. variance: 0.2
  1220. variance: 0.2
  1221. step: 16
  1222. offset: 0.5
  1223. }
  1224. }
  1225. layer {
  1226. name: "conv6_2_mbox_loc"
  1227. type: "Convolution"
  1228. bottom: "conv6_2_h"
  1229. top: "conv6_2_mbox_loc"
  1230. param {
  1231. lr_mult: 1
  1232. decay_mult: 1
  1233. }
  1234. param {
  1235. lr_mult: 2
  1236. decay_mult: 0
  1237. }
  1238. convolution_param {
  1239. num_output: 24
  1240. pad: 1
  1241. kernel_size: 3
  1242. stride: 1
  1243. weight_filler {
  1244. type: "xavier"
  1245. }
  1246. bias_filler {
  1247. type: "constant"
  1248. value: 0
  1249. }
  1250. }
  1251. }
  1252. layer {
  1253. name: "conv6_2_mbox_loc_perm"
  1254. type: "Permute"
  1255. bottom: "conv6_2_mbox_loc"
  1256. top: "conv6_2_mbox_loc_perm"
  1257. permute_param {
  1258. order: 0
  1259. order: 2
  1260. order: 3
  1261. order: 1
  1262. }
  1263. }
  1264. layer {
  1265. name: "conv6_2_mbox_loc_flat"
  1266. type: "Flatten"
  1267. bottom: "conv6_2_mbox_loc_perm"
  1268. top: "conv6_2_mbox_loc_flat"
  1269. flatten_param {
  1270. axis: 1
  1271. }
  1272. }
  1273. layer {
  1274. name: "conv6_2_mbox_conf"
  1275. type: "Convolution"
  1276. bottom: "conv6_2_h"
  1277. top: "conv6_2_mbox_conf"
  1278. param {
  1279. lr_mult: 1
  1280. decay_mult: 1
  1281. }
  1282. param {
  1283. lr_mult: 2
  1284. decay_mult: 0
  1285. }
  1286. convolution_param {
  1287. num_output: 12 # 126
  1288. pad: 1
  1289. kernel_size: 3
  1290. stride: 1
  1291. weight_filler {
  1292. type: "xavier"
  1293. }
  1294. bias_filler {
  1295. type: "constant"
  1296. value: 0
  1297. }
  1298. }
  1299. }
  1300. layer {
  1301. name: "conv6_2_mbox_conf_perm"
  1302. type: "Permute"
  1303. bottom: "conv6_2_mbox_conf"
  1304. top: "conv6_2_mbox_conf_perm"
  1305. permute_param {
  1306. order: 0
  1307. order: 2
  1308. order: 3
  1309. order: 1
  1310. }
  1311. }
  1312. layer {
  1313. name: "conv6_2_mbox_conf_flat"
  1314. type: "Flatten"
  1315. bottom: "conv6_2_mbox_conf_perm"
  1316. top: "conv6_2_mbox_conf_flat"
  1317. flatten_param {
  1318. axis: 1
  1319. }
  1320. }
  1321. layer {
  1322. name: "conv6_2_mbox_priorbox"
  1323. type: "PriorBox"
  1324. bottom: "conv6_2_h"
  1325. bottom: "data"
  1326. top: "conv6_2_mbox_priorbox"
  1327. prior_box_param {
  1328. min_size: 111.0
  1329. max_size: 162.0
  1330. aspect_ratio: 2
  1331. aspect_ratio: 3
  1332. flip: true
  1333. clip: false
  1334. variance: 0.1
  1335. variance: 0.1
  1336. variance: 0.2
  1337. variance: 0.2
  1338. step: 32
  1339. offset: 0.5
  1340. }
  1341. }
  1342. layer {
  1343. name: "conv7_2_mbox_loc"
  1344. type: "Convolution"
  1345. bottom: "conv7_2_h"
  1346. top: "conv7_2_mbox_loc"
  1347. param {
  1348. lr_mult: 1
  1349. decay_mult: 1
  1350. }
  1351. param {
  1352. lr_mult: 2
  1353. decay_mult: 0
  1354. }
  1355. convolution_param {
  1356. num_output: 24
  1357. pad: 1
  1358. kernel_size: 3
  1359. stride: 1
  1360. weight_filler {
  1361. type: "xavier"
  1362. }
  1363. bias_filler {
  1364. type: "constant"
  1365. value: 0
  1366. }
  1367. }
  1368. }
  1369. layer {
  1370. name: "conv7_2_mbox_loc_perm"
  1371. type: "Permute"
  1372. bottom: "conv7_2_mbox_loc"
  1373. top: "conv7_2_mbox_loc_perm"
  1374. permute_param {
  1375. order: 0
  1376. order: 2
  1377. order: 3
  1378. order: 1
  1379. }
  1380. }
  1381. layer {
  1382. name: "conv7_2_mbox_loc_flat"
  1383. type: "Flatten"
  1384. bottom: "conv7_2_mbox_loc_perm"
  1385. top: "conv7_2_mbox_loc_flat"
  1386. flatten_param {
  1387. axis: 1
  1388. }
  1389. }
  1390. layer {
  1391. name: "conv7_2_mbox_conf"
  1392. type: "Convolution"
  1393. bottom: "conv7_2_h"
  1394. top: "conv7_2_mbox_conf"
  1395. param {
  1396. lr_mult: 1
  1397. decay_mult: 1
  1398. }
  1399. param {
  1400. lr_mult: 2
  1401. decay_mult: 0
  1402. }
  1403. convolution_param {
  1404. num_output: 12 # 126
  1405. pad: 1
  1406. kernel_size: 3
  1407. stride: 1
  1408. weight_filler {
  1409. type: "xavier"
  1410. }
  1411. bias_filler {
  1412. type: "constant"
  1413. value: 0
  1414. }
  1415. }
  1416. }
  1417. layer {
  1418. name: "conv7_2_mbox_conf_perm"
  1419. type: "Permute"
  1420. bottom: "conv7_2_mbox_conf"
  1421. top: "conv7_2_mbox_conf_perm"
  1422. permute_param {
  1423. order: 0
  1424. order: 2
  1425. order: 3
  1426. order: 1
  1427. }
  1428. }
  1429. layer {
  1430. name: "conv7_2_mbox_conf_flat"
  1431. type: "Flatten"
  1432. bottom: "conv7_2_mbox_conf_perm"
  1433. top: "conv7_2_mbox_conf_flat"
  1434. flatten_param {
  1435. axis: 1
  1436. }
  1437. }
  1438. layer {
  1439. name: "conv7_2_mbox_priorbox"
  1440. type: "PriorBox"
  1441. bottom: "conv7_2_h"
  1442. bottom: "data"
  1443. top: "conv7_2_mbox_priorbox"
  1444. prior_box_param {
  1445. min_size: 162.0
  1446. max_size: 213.0
  1447. aspect_ratio: 2
  1448. aspect_ratio: 3
  1449. flip: true
  1450. clip: false
  1451. variance: 0.1
  1452. variance: 0.1
  1453. variance: 0.2
  1454. variance: 0.2
  1455. step: 64
  1456. offset: 0.5
  1457. }
  1458. }
  1459. layer {
  1460. name: "conv8_2_mbox_loc"
  1461. type: "Convolution"
  1462. bottom: "conv8_2_h"
  1463. top: "conv8_2_mbox_loc"
  1464. param {
  1465. lr_mult: 1
  1466. decay_mult: 1
  1467. }
  1468. param {
  1469. lr_mult: 2
  1470. decay_mult: 0
  1471. }
  1472. convolution_param {
  1473. num_output: 16
  1474. pad: 1
  1475. kernel_size: 3
  1476. stride: 1
  1477. weight_filler {
  1478. type: "xavier"
  1479. }
  1480. bias_filler {
  1481. type: "constant"
  1482. value: 0
  1483. }
  1484. }
  1485. }
  1486. layer {
  1487. name: "conv8_2_mbox_loc_perm"
  1488. type: "Permute"
  1489. bottom: "conv8_2_mbox_loc"
  1490. top: "conv8_2_mbox_loc_perm"
  1491. permute_param {
  1492. order: 0
  1493. order: 2
  1494. order: 3
  1495. order: 1
  1496. }
  1497. }
  1498. layer {
  1499. name: "conv8_2_mbox_loc_flat"
  1500. type: "Flatten"
  1501. bottom: "conv8_2_mbox_loc_perm"
  1502. top: "conv8_2_mbox_loc_flat"
  1503. flatten_param {
  1504. axis: 1
  1505. }
  1506. }
  1507. layer {
  1508. name: "conv8_2_mbox_conf"
  1509. type: "Convolution"
  1510. bottom: "conv8_2_h"
  1511. top: "conv8_2_mbox_conf"
  1512. param {
  1513. lr_mult: 1
  1514. decay_mult: 1
  1515. }
  1516. param {
  1517. lr_mult: 2
  1518. decay_mult: 0
  1519. }
  1520. convolution_param {
  1521. num_output: 8 # 84
  1522. pad: 1
  1523. kernel_size: 3
  1524. stride: 1
  1525. weight_filler {
  1526. type: "xavier"
  1527. }
  1528. bias_filler {
  1529. type: "constant"
  1530. value: 0
  1531. }
  1532. }
  1533. }
  1534. layer {
  1535. name: "conv8_2_mbox_conf_perm"
  1536. type: "Permute"
  1537. bottom: "conv8_2_mbox_conf"
  1538. top: "conv8_2_mbox_conf_perm"
  1539. permute_param {
  1540. order: 0
  1541. order: 2
  1542. order: 3
  1543. order: 1
  1544. }
  1545. }
  1546. layer {
  1547. name: "conv8_2_mbox_conf_flat"
  1548. type: "Flatten"
  1549. bottom: "conv8_2_mbox_conf_perm"
  1550. top: "conv8_2_mbox_conf_flat"
  1551. flatten_param {
  1552. axis: 1
  1553. }
  1554. }
  1555. layer {
  1556. name: "conv8_2_mbox_priorbox"
  1557. type: "PriorBox"
  1558. bottom: "conv8_2_h"
  1559. bottom: "data"
  1560. top: "conv8_2_mbox_priorbox"
  1561. prior_box_param {
  1562. min_size: 213.0
  1563. max_size: 264.0
  1564. aspect_ratio: 2
  1565. flip: true
  1566. clip: false
  1567. variance: 0.1
  1568. variance: 0.1
  1569. variance: 0.2
  1570. variance: 0.2
  1571. step: 100
  1572. offset: 0.5
  1573. }
  1574. }
  1575. # layer {
  1576. # name: "conv9_2_mbox_loc"
  1577. # type: "Convolution"
  1578. # bottom: "conv9_2_h"
  1579. # top: "conv9_2_mbox_loc"
  1580. # param {
  1581. # lr_mult: 1
  1582. # decay_mult: 1
  1583. # }
  1584. # param {
  1585. # lr_mult: 2
  1586. # decay_mult: 0
  1587. # }
  1588. # convolution_param {
  1589. # num_output: 16
  1590. # pad: 1
  1591. # kernel_size: 3
  1592. # stride: 1
  1593. # weight_filler {
  1594. # type: "xavier"
  1595. # }
  1596. # bias_filler {
  1597. # type: "constant"
  1598. # value: 0
  1599. # }
  1600. # }
  1601. # }
  1602. # layer {
  1603. # name: "conv9_2_mbox_loc_perm"
  1604. # type: "Permute"
  1605. # bottom: "conv9_2_mbox_loc"
  1606. # top: "conv9_2_mbox_loc_perm"
  1607. # permute_param {
  1608. # order: 0
  1609. # order: 2
  1610. # order: 3
  1611. # order: 1
  1612. # }
  1613. # }
  1614. # layer {
  1615. # name: "conv9_2_mbox_loc_flat"
  1616. # type: "Flatten"
  1617. # bottom: "conv9_2_mbox_loc_perm"
  1618. # top: "conv9_2_mbox_loc_flat"
  1619. # flatten_param {
  1620. # axis: 1
  1621. # }
  1622. # }
  1623. # layer {
  1624. # name: "conv9_2_mbox_conf"
  1625. # type: "Convolution"
  1626. # bottom: "conv9_2_h"
  1627. # top: "conv9_2_mbox_conf"
  1628. # param {
  1629. # lr_mult: 1
  1630. # decay_mult: 1
  1631. # }
  1632. # param {
  1633. # lr_mult: 2
  1634. # decay_mult: 0
  1635. # }
  1636. # convolution_param {
  1637. # num_output: 8 # 84
  1638. # pad: 1
  1639. # kernel_size: 3
  1640. # stride: 1
  1641. # weight_filler {
  1642. # type: "xavier"
  1643. # }
  1644. # bias_filler {
  1645. # type: "constant"
  1646. # value: 0
  1647. # }
  1648. # }
  1649. # }
  1650. # layer {
  1651. # name: "conv9_2_mbox_conf_perm"
  1652. # type: "Permute"
  1653. # bottom: "conv9_2_mbox_conf"
  1654. # top: "conv9_2_mbox_conf_perm"
  1655. # permute_param {
  1656. # order: 0
  1657. # order: 2
  1658. # order: 3
  1659. # order: 1
  1660. # }
  1661. # }
  1662. # layer {
  1663. # name: "conv9_2_mbox_conf_flat"
  1664. # type: "Flatten"
  1665. # bottom: "conv9_2_mbox_conf_perm"
  1666. # top: "conv9_2_mbox_conf_flat"
  1667. # flatten_param {
  1668. # axis: 1
  1669. # }
  1670. # }
  1671. # layer {
  1672. # name: "conv9_2_mbox_priorbox"
  1673. # type: "PriorBox"
  1674. # bottom: "conv9_2_h"
  1675. # bottom: "data"
  1676. # top: "conv9_2_mbox_priorbox"
  1677. # prior_box_param {
  1678. # min_size: 264.0
  1679. # max_size: 315.0
  1680. # aspect_ratio: 2
  1681. # flip: true
  1682. # clip: false
  1683. # variance: 0.1
  1684. # variance: 0.1
  1685. # variance: 0.2
  1686. # variance: 0.2
  1687. # step: 300
  1688. # offset: 0.5
  1689. # }
  1690. # }
  1691. layer {
  1692. name: "mbox_loc"
  1693. type: "Concat"
  1694. bottom: "conv4_3_norm_mbox_loc_flat"
  1695. bottom: "fc7_mbox_loc_flat"
  1696. bottom: "conv6_2_mbox_loc_flat"
  1697. bottom: "conv7_2_mbox_loc_flat"
  1698. bottom: "conv8_2_mbox_loc_flat"
  1699. # bottom: "conv9_2_mbox_loc_flat"
  1700. top: "mbox_loc"
  1701. concat_param {
  1702. axis: 1
  1703. }
  1704. }
  1705. layer {
  1706. name: "mbox_conf"
  1707. type: "Concat"
  1708. bottom: "conv4_3_norm_mbox_conf_flat"
  1709. bottom: "fc7_mbox_conf_flat"
  1710. bottom: "conv6_2_mbox_conf_flat"
  1711. bottom: "conv7_2_mbox_conf_flat"
  1712. bottom: "conv8_2_mbox_conf_flat"
  1713. # bottom: "conv9_2_mbox_conf_flat"
  1714. top: "mbox_conf"
  1715. concat_param {
  1716. axis: 1
  1717. }
  1718. }
  1719. layer {
  1720. name: "mbox_priorbox"
  1721. type: "Concat"
  1722. bottom: "conv4_3_norm_mbox_priorbox"
  1723. bottom: "fc7_mbox_priorbox"
  1724. bottom: "conv6_2_mbox_priorbox"
  1725. bottom: "conv7_2_mbox_priorbox"
  1726. bottom: "conv8_2_mbox_priorbox"
  1727. # bottom: "conv9_2_mbox_priorbox"
  1728. top: "mbox_priorbox"
  1729. concat_param {
  1730. axis: 2
  1731. }
  1732. }
  1733. layer {
  1734. name: "mbox_conf_reshape"
  1735. type: "Reshape"
  1736. bottom: "mbox_conf"
  1737. top: "mbox_conf_reshape"
  1738. reshape_param {
  1739. shape {
  1740. dim: 0
  1741. dim: -1
  1742. dim: 2
  1743. }
  1744. }
  1745. }
  1746. layer {
  1747. name: "mbox_conf_softmax"
  1748. type: "Softmax"
  1749. bottom: "mbox_conf_reshape"
  1750. top: "mbox_conf_softmax"
  1751. softmax_param {
  1752. axis: 2
  1753. }
  1754. }
  1755. layer {
  1756. name: "mbox_conf_flatten"
  1757. type: "Flatten"
  1758. bottom: "mbox_conf_softmax"
  1759. top: "mbox_conf_flatten"
  1760. flatten_param {
  1761. axis: 1
  1762. }
  1763. }
  1764. layer {
  1765. name: "detection_out"
  1766. type: "DetectionOutput"
  1767. bottom: "mbox_loc"
  1768. bottom: "mbox_conf_flatten"
  1769. bottom: "mbox_priorbox"
  1770. top: "detection_out"
  1771. include {
  1772. phase: TEST
  1773. }
  1774. detection_output_param {
  1775. num_classes: 2
  1776. share_location: true
  1777. background_label_id: 0
  1778. nms_param {
  1779. nms_threshold: 0.45
  1780. top_k: 400
  1781. }
  1782. code_type: CENTER_SIZE
  1783. keep_top_k: 200
  1784. confidence_threshold: 0.01
  1785. }
  1786. }