123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282 |
- #include <opencv2/dnn.hpp>
- #include <opencv2/imgproc.hpp>
- #include <opencv2/highgui.hpp>
- #include <opencv2/objdetect.hpp>
- #include <iostream>
- using namespace cv;
- using namespace std;
- static
- void visualize(Mat& input, int frame, Mat& faces, double fps, int thickness = 2)
- {
- std::string fpsString = cv::format("FPS : %.2f", (float)fps);
- if (frame >= 0)
- cout << "Frame " << frame << ", ";
- cout << "FPS: " << fpsString << endl;
- for (int i = 0; i < faces.rows; i++)
- {
- // Print results
- cout << "Face " << i
- << ", top-left coordinates: (" << faces.at<float>(i, 0) << ", " << faces.at<float>(i, 1) << "), "
- << "box width: " << faces.at<float>(i, 2) << ", box height: " << faces.at<float>(i, 3) << ", "
- << "score: " << cv::format("%.2f", faces.at<float>(i, 14))
- << endl;
- // Draw bounding box
- rectangle(input, Rect2i(int(faces.at<float>(i, 0)), int(faces.at<float>(i, 1)), int(faces.at<float>(i, 2)), int(faces.at<float>(i, 3))), Scalar(0, 255, 0), thickness);
- // Draw landmarks
- circle(input, Point2i(int(faces.at<float>(i, 4)), int(faces.at<float>(i, 5))), 2, Scalar(255, 0, 0), thickness);
- circle(input, Point2i(int(faces.at<float>(i, 6)), int(faces.at<float>(i, 7))), 2, Scalar(0, 0, 255), thickness);
- circle(input, Point2i(int(faces.at<float>(i, 8)), int(faces.at<float>(i, 9))), 2, Scalar(0, 255, 0), thickness);
- circle(input, Point2i(int(faces.at<float>(i, 10)), int(faces.at<float>(i, 11))), 2, Scalar(255, 0, 255), thickness);
- circle(input, Point2i(int(faces.at<float>(i, 12)), int(faces.at<float>(i, 13))), 2, Scalar(0, 255, 255), thickness);
- }
- putText(input, fpsString, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0), 2);
- }
- int main(int argc, char** argv)
- {
- CommandLineParser parser(argc, argv,
- "{help h | | Print this message}"
- "{image1 i1 | | Path to the input image1. Omit for detecting through VideoCapture}"
- "{image2 i2 | | Path to the input image2. When image1 and image2 parameters given then the program try to find a face on both images and runs face recognition algorithm}"
- "{video v | 0 | Path to the input video}"
- "{scale sc | 1.0 | Scale factor used to resize input video frames}"
- "{fd_model fd | face_detection_yunet_2021dec.onnx| Path to the model. Download yunet.onnx in https://github.com/opencv/opencv_zoo/tree/master/models/face_detection_yunet}"
- "{fr_model fr | face_recognition_sface_2021dec.onnx | Path to the face recognition model. Download the model at https://github.com/opencv/opencv_zoo/tree/master/models/face_recognition_sface}"
- "{score_threshold | 0.9 | Filter out faces of score < score_threshold}"
- "{nms_threshold | 0.3 | Suppress bounding boxes of iou >= nms_threshold}"
- "{top_k | 5000 | Keep top_k bounding boxes before NMS}"
- "{save s | false | Set true to save results. This flag is invalid when using camera}"
- );
- if (parser.has("help"))
- {
- parser.printMessage();
- return 0;
- }
- String fd_modelPath = parser.get<String>("fd_model");
- String fr_modelPath = parser.get<String>("fr_model");
- float scoreThreshold = parser.get<float>("score_threshold");
- float nmsThreshold = parser.get<float>("nms_threshold");
- int topK = parser.get<int>("top_k");
- bool save = parser.get<bool>("save");
- float scale = parser.get<float>("scale");
- double cosine_similar_thresh = 0.363;
- double l2norm_similar_thresh = 1.128;
- //! [initialize_FaceDetectorYN]
- // Initialize FaceDetectorYN
- Ptr<FaceDetectorYN> detector = FaceDetectorYN::create(fd_modelPath, "", Size(320, 320), scoreThreshold, nmsThreshold, topK);
- //! [initialize_FaceDetectorYN]
- TickMeter tm;
- // If input is an image
- if (parser.has("image1"))
- {
- String input1 = parser.get<String>("image1");
- Mat image1 = imread(samples::findFile(input1));
- if (image1.empty())
- {
- std::cerr << "Cannot read image: " << input1 << std::endl;
- return 2;
- }
- int imageWidth = int(image1.cols * scale);
- int imageHeight = int(image1.rows * scale);
- resize(image1, image1, Size(imageWidth, imageHeight));
- tm.start();
- //! [inference]
- // Set input size before inference
- detector->setInputSize(image1.size());
- Mat faces1;
- detector->detect(image1, faces1);
- if (faces1.rows < 1)
- {
- std::cerr << "Cannot find a face in " << input1 << std::endl;
- return 1;
- }
- //! [inference]
- tm.stop();
- // Draw results on the input image
- visualize(image1, -1, faces1, tm.getFPS());
- // Save results if save is true
- if (save)
- {
- cout << "Saving result.jpg...\n";
- imwrite("result.jpg", image1);
- }
- // Visualize results
- imshow("image1", image1);
- pollKey(); // handle UI events to show content
- if (parser.has("image2"))
- {
- String input2 = parser.get<String>("image2");
- Mat image2 = imread(samples::findFile(input2));
- if (image2.empty())
- {
- std::cerr << "Cannot read image2: " << input2 << std::endl;
- return 2;
- }
- tm.reset();
- tm.start();
- detector->setInputSize(image2.size());
- Mat faces2;
- detector->detect(image2, faces2);
- if (faces2.rows < 1)
- {
- std::cerr << "Cannot find a face in " << input2 << std::endl;
- return 1;
- }
- tm.stop();
- visualize(image2, -1, faces2, tm.getFPS());
- if (save)
- {
- cout << "Saving result2.jpg...\n";
- imwrite("result2.jpg", image2);
- }
- imshow("image2", image2);
- pollKey();
- //! [initialize_FaceRecognizerSF]
- // Initialize FaceRecognizerSF
- Ptr<FaceRecognizerSF> faceRecognizer = FaceRecognizerSF::create(fr_modelPath, "");
- //! [initialize_FaceRecognizerSF]
- //! [facerecognizer]
- // Aligning and cropping facial image through the first face of faces detected.
- Mat aligned_face1, aligned_face2;
- faceRecognizer->alignCrop(image1, faces1.row(0), aligned_face1);
- faceRecognizer->alignCrop(image2, faces2.row(0), aligned_face2);
- // Run feature extraction with given aligned_face
- Mat feature1, feature2;
- faceRecognizer->feature(aligned_face1, feature1);
- feature1 = feature1.clone();
- faceRecognizer->feature(aligned_face2, feature2);
- feature2 = feature2.clone();
- //! [facerecognizer]
- //! [match]
- double cos_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_COSINE);
- double L2_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_NORM_L2);
- //! [match]
- if (cos_score >= cosine_similar_thresh)
- {
- std::cout << "They have the same identity;";
- }
- else
- {
- std::cout << "They have different identities;";
- }
- std::cout << " Cosine Similarity: " << cos_score << ", threshold: " << cosine_similar_thresh << ". (higher value means higher similarity, max 1.0)\n";
- if (L2_score <= l2norm_similar_thresh)
- {
- std::cout << "They have the same identity;";
- }
- else
- {
- std::cout << "They have different identities.";
- }
- std::cout << " NormL2 Distance: " << L2_score << ", threshold: " << l2norm_similar_thresh << ". (lower value means higher similarity, min 0.0)\n";
- }
- cout << "Press any key to exit..." << endl;
- waitKey(0);
- }
- else
- {
- int frameWidth, frameHeight;
- VideoCapture capture;
- std::string video = parser.get<string>("video");
- if (video.size() == 1 && isdigit(video[0]))
- capture.open(parser.get<int>("video"));
- else
- capture.open(samples::findFileOrKeep(video)); // keep GStreamer pipelines
- if (capture.isOpened())
- {
- frameWidth = int(capture.get(CAP_PROP_FRAME_WIDTH) * scale);
- frameHeight = int(capture.get(CAP_PROP_FRAME_HEIGHT) * scale);
- cout << "Video " << video
- << ": width=" << frameWidth
- << ", height=" << frameHeight
- << endl;
- }
- else
- {
- cout << "Could not initialize video capturing: " << video << "\n";
- return 1;
- }
- detector->setInputSize(Size(frameWidth, frameHeight));
- cout << "Press 'SPACE' to save frame, any other key to exit..." << endl;
- int nFrame = 0;
- for (;;)
- {
- // Get frame
- Mat frame;
- if (!capture.read(frame))
- {
- cerr << "Can't grab frame! Stop\n";
- break;
- }
- resize(frame, frame, Size(frameWidth, frameHeight));
- // Inference
- Mat faces;
- tm.start();
- detector->detect(frame, faces);
- tm.stop();
- Mat result = frame.clone();
- // Draw results on the input image
- visualize(result, nFrame, faces, tm.getFPS());
- // Visualize results
- imshow("Live", result);
- int key = waitKey(1);
- bool saveFrame = save;
- if (key == ' ')
- {
- saveFrame = true;
- key = 0; // handled
- }
- if (saveFrame)
- {
- std::string frame_name = cv::format("frame_%05d.png", nFrame);
- std::string result_name = cv::format("result_%05d.jpg", nFrame);
- cout << "Saving '" << frame_name << "' and '" << result_name << "' ...\n";
- imwrite(frame_name, frame);
- imwrite(result_name, result);
- }
- ++nFrame;
- if (key > 0)
- break;
- }
- cout << "Processed " << nFrame << " frames" << endl;
- }
- cout << "Done." << endl;
- return 0;
- }
|