123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- import cv2 as cv
- import argparse
- parser = argparse.ArgumentParser(
- description='This sample shows how to define custom OpenCV deep learning layers in Python. '
- 'Holistically-Nested Edge Detection (https://arxiv.org/abs/1504.06375) neural network '
- 'is used as an example model. Find a pre-trained model at https://github.com/s9xie/hed.')
- parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera')
- parser.add_argument('--prototxt', help='Path to deploy.prototxt', required=True)
- parser.add_argument('--caffemodel', help='Path to hed_pretrained_bsds.caffemodel', required=True)
- parser.add_argument('--width', help='Resize input image to a specific width', default=500, type=int)
- parser.add_argument('--height', help='Resize input image to a specific height', default=500, type=int)
- args = parser.parse_args()
- #! [CropLayer]
- class CropLayer(object):
- def __init__(self, params, blobs):
- self.xstart = 0
- self.xend = 0
- self.ystart = 0
- self.yend = 0
- # Our layer receives two inputs. We need to crop the first input blob
- # to match a shape of the second one (keeping batch size and number of channels)
- def getMemoryShapes(self, inputs):
- inputShape, targetShape = inputs[0], inputs[1]
- batchSize, numChannels = inputShape[0], inputShape[1]
- height, width = targetShape[2], targetShape[3]
- self.ystart = (inputShape[2] - targetShape[2]) // 2
- self.xstart = (inputShape[3] - targetShape[3]) // 2
- self.yend = self.ystart + height
- self.xend = self.xstart + width
- return [[batchSize, numChannels, height, width]]
- def forward(self, inputs):
- return [inputs[0][:,:,self.ystart:self.yend,self.xstart:self.xend]]
- #! [CropLayer]
- #! [Register]
- cv.dnn_registerLayer('Crop', CropLayer)
- #! [Register]
- # Load the model.
- net = cv.dnn.readNet(cv.samples.findFile(args.prototxt), cv.samples.findFile(args.caffemodel))
- kWinName = 'Holistically-Nested Edge Detection'
- cv.namedWindow('Input', cv.WINDOW_NORMAL)
- cv.namedWindow(kWinName, cv.WINDOW_NORMAL)
- cap = cv.VideoCapture(args.input if args.input else 0)
- while cv.waitKey(1) < 0:
- hasFrame, frame = cap.read()
- if not hasFrame:
- cv.waitKey()
- break
- cv.imshow('Input', frame)
- inp = cv.dnn.blobFromImage(frame, scalefactor=1.0, size=(args.width, args.height),
- mean=(104.00698793, 116.66876762, 122.67891434),
- swapRB=False, crop=False)
- net.setInput(inp)
- out = net.forward()
- out = out[0, 0]
- out = cv.resize(out, (frame.shape[1], frame.shape[0]))
- cv.imshow(kWinName, out)
|