123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- import sys
- import os
- import cv2 as cv
- def add_argument(zoo, parser, name, help, required=False, default=None, type=None, action=None, nargs=None):
- if len(sys.argv) <= 1:
- return
- modelName = sys.argv[1]
- if os.path.isfile(zoo):
- fs = cv.FileStorage(zoo, cv.FILE_STORAGE_READ)
- node = fs.getNode(modelName)
- if not node.empty():
- value = node.getNode(name)
- if not value.empty():
- if value.isReal():
- default = value.real()
- elif value.isString():
- default = value.string()
- elif value.isInt():
- default = int(value.real())
- elif value.isSeq():
- default = []
- for i in range(value.size()):
- v = value.at(i)
- if v.isInt():
- default.append(int(v.real()))
- elif v.isReal():
- default.append(v.real())
- else:
- print('Unexpected value format')
- exit(0)
- else:
- print('Unexpected field format')
- exit(0)
- required = False
- if action == 'store_true':
- default = 1 if default == 'true' else (0 if default == 'false' else default)
- assert(default is None or default == 0 or default == 1)
- parser.add_argument('--' + name, required=required, help=help, default=bool(default),
- action=action)
- else:
- parser.add_argument('--' + name, required=required, help=help, default=default,
- action=action, nargs=nargs, type=type)
- def add_preproc_args(zoo, parser, sample):
- aliases = []
- if os.path.isfile(zoo):
- fs = cv.FileStorage(zoo, cv.FILE_STORAGE_READ)
- root = fs.root()
- for name in root.keys():
- model = root.getNode(name)
- if model.getNode('sample').string() == sample:
- aliases.append(name)
- parser.add_argument('alias', nargs='?', choices=aliases,
- help='An alias name of model to extract preprocessing parameters from models.yml file.')
- add_argument(zoo, parser, 'model', required=True,
- help='Path to a binary file of model contains trained weights. '
- 'It could be a file with extensions .caffemodel (Caffe), '
- '.pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet), .bin (OpenVINO)')
- add_argument(zoo, parser, 'config',
- help='Path to a text file of model contains network configuration. '
- 'It could be a file with extensions .prototxt (Caffe), .pbtxt or .config (TensorFlow), .cfg (Darknet), .xml (OpenVINO)')
- add_argument(zoo, parser, 'mean', nargs='+', type=float, default=[0, 0, 0],
- help='Preprocess input image by subtracting mean values. '
- 'Mean values should be in BGR order.')
- add_argument(zoo, parser, 'scale', type=float, default=1.0,
- help='Preprocess input image by multiplying on a scale factor.')
- add_argument(zoo, parser, 'width', type=int,
- help='Preprocess input image by resizing to a specific width.')
- add_argument(zoo, parser, 'height', type=int,
- help='Preprocess input image by resizing to a specific height.')
- add_argument(zoo, parser, 'rgb', action='store_true',
- help='Indicate that model works with RGB input images instead BGR ones.')
- add_argument(zoo, parser, 'classes',
- help='Optional path to a text file with names of classes to label detected objects.')
- def findFile(filename):
- if filename:
- if os.path.exists(filename):
- return filename
- fpath = cv.samples.findFile(filename, False)
- if fpath:
- return fpath
- samplesDataDir = os.path.join(os.path.dirname(os.path.abspath(__file__)),
- '..',
- 'data',
- 'dnn')
- if os.path.exists(os.path.join(samplesDataDir, filename)):
- return os.path.join(samplesDataDir, filename)
- for path in ['OPENCV_DNN_TEST_DATA_PATH', 'OPENCV_TEST_DATA_PATH']:
- try:
- extraPath = os.environ[path]
- absPath = os.path.join(extraPath, 'dnn', filename)
- if os.path.exists(absPath):
- return absPath
- except KeyError:
- pass
- print('File ' + filename + ' not found! Please specify a path to '
- '/opencv_extra/testdata in OPENCV_DNN_TEST_DATA_PATH environment '
- 'variable or pass a full path to model.')
- exit(0)
|