123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- import argparse
- import cv2 as cv
- import numpy as np
- from common import *
- def get_args_parser(func_args):
- backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE,
- cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
- targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD,
- cv.dnn.DNN_TARGET_HDDL, cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)
- parser = argparse.ArgumentParser(add_help=False)
- parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
- help='An optional path to file with preprocessing parameters.')
- parser.add_argument('--input',
- help='Path to input image or video file. Skip this argument to capture frames from a camera.')
- parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'],
- help='Optional name of an origin framework of the model. '
- 'Detect it automatically if it does not set.')
- parser.add_argument('--std', nargs='*', type=float,
- help='Preprocess input image by dividing on a standard deviation.')
- parser.add_argument('--crop', type=bool, default=False,
- help='Preprocess input image by dividing on a standard deviation.')
- parser.add_argument('--initial_width', type=int,
- help='Preprocess input image by initial resizing to a specific width.')
- parser.add_argument('--initial_height', type=int,
- help='Preprocess input image by initial resizing to a specific height.')
- parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
- help="Choose one of computation backends: "
- "%d: automatically (by default), "
- "%d: Halide language (http://halide-lang.org/), "
- "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
- "%d: OpenCV implementation, "
- "%d: VKCOM, "
- "%d: CUDA" % backends)
- parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
- help='Choose one of target computation devices: '
- '%d: CPU target (by default), '
- '%d: OpenCL, '
- '%d: OpenCL fp16 (half-float precision), '
- '%d: NCS2 VPU, '
- '%d: HDDL VPU, '
- '%d: Vulkan, '
- '%d: CUDA, '
- '%d: CUDA fp16 (half-float preprocess)'% targets)
- args, _ = parser.parse_known_args()
- add_preproc_args(args.zoo, parser, 'classification')
- parser = argparse.ArgumentParser(parents=[parser],
- description='Use this script to run classification deep learning networks using OpenCV.',
- formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- return parser.parse_args(func_args)
- def main(func_args=None):
- args = get_args_parser(func_args)
- args.model = findFile(args.model)
- args.config = findFile(args.config)
- args.classes = findFile(args.classes)
- # Load names of classes
- classes = None
- if args.classes:
- with open(args.classes, 'rt') as f:
- classes = f.read().rstrip('\n').split('\n')
- # Load a network
- net = cv.dnn.readNet(args.model, args.config, args.framework)
- net.setPreferableBackend(args.backend)
- net.setPreferableTarget(args.target)
- winName = 'Deep learning image classification in OpenCV'
- cv.namedWindow(winName, cv.WINDOW_NORMAL)
- cap = cv.VideoCapture(args.input if args.input else 0)
- while cv.waitKey(1) < 0:
- hasFrame, frame = cap.read()
- if not hasFrame:
- cv.waitKey()
- break
- # Create a 4D blob from a frame.
- inpWidth = args.width if args.width else frame.shape[1]
- inpHeight = args.height if args.height else frame.shape[0]
- if args.initial_width and args.initial_height:
- frame = cv.resize(frame, (args.initial_width, args.initial_height))
- blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=args.crop)
- if args.std:
- blob[0] /= np.asarray(args.std, dtype=np.float32).reshape(3, 1, 1)
- # Run a model
- net.setInput(blob)
- out = net.forward()
- # Get a class with a highest score.
- out = out.flatten()
- classId = np.argmax(out)
- confidence = out[classId]
- # Put efficiency information.
- t, _ = net.getPerfProfile()
- label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
- cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
- # Print predicted class.
- label = '%s: %.4f' % (classes[classId] if classes else 'Class #%d' % classId, confidence)
- cv.putText(frame, label, (0, 40), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
- cv.imshow(winName, frame)
- if __name__ == "__main__":
- main()
|