123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 |
- #include <fstream>
- #include <sstream>
- #include <iostream>
- #include <opencv2/dnn.hpp>
- #include <opencv2/imgproc.hpp>
- #include <opencv2/highgui.hpp>
- #include "common.hpp"
- std::string keys =
- "{ help h | | Print help message. }"
- "{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
- "{ zoo | models.yml | An optional path to file with preprocessing parameters }"
- "{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
- "{ initial_width | 0 | Preprocess input image by initial resizing to a specific width.}"
- "{ initial_height | 0 | Preprocess input image by initial resizing to a specific height.}"
- "{ std | 0.0 0.0 0.0 | Preprocess input image by dividing on a standard deviation.}"
- "{ crop | false | Preprocess input image by center cropping.}"
- "{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
- "{ needSoftmax | false | Use Softmax to post-process the output of the net.}"
- "{ classes | | Optional path to a text file with names of classes. }"
- "{ backend | 0 | Choose one of computation backends: "
- "0: automatically (by default), "
- "1: Halide language (http://halide-lang.org/), "
- "2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
- "3: OpenCV implementation, "
- "4: VKCOM, "
- "5: CUDA, "
- "6: WebNN }"
- "{ target | 0 | Choose one of target computation devices: "
- "0: CPU target (by default), "
- "1: OpenCL, "
- "2: OpenCL fp16 (half-float precision), "
- "3: VPU, "
- "4: Vulkan, "
- "6: CUDA, "
- "7: CUDA fp16 (half-float preprocess) }";
- using namespace cv;
- using namespace dnn;
- std::vector<std::string> classes;
- int main(int argc, char** argv)
- {
- CommandLineParser parser(argc, argv, keys);
- const std::string modelName = parser.get<String>("@alias");
- const std::string zooFile = parser.get<String>("zoo");
- keys += genPreprocArguments(modelName, zooFile);
- parser = CommandLineParser(argc, argv, keys);
- parser.about("Use this script to run classification deep learning networks using OpenCV.");
- if (argc == 1 || parser.has("help"))
- {
- parser.printMessage();
- return 0;
- }
- int rszWidth = parser.get<int>("initial_width");
- int rszHeight = parser.get<int>("initial_height");
- float scale = parser.get<float>("scale");
- Scalar mean = parser.get<Scalar>("mean");
- Scalar std = parser.get<Scalar>("std");
- bool swapRB = parser.get<bool>("rgb");
- bool crop = parser.get<bool>("crop");
- int inpWidth = parser.get<int>("width");
- int inpHeight = parser.get<int>("height");
- String model = findFile(parser.get<String>("model"));
- String config = findFile(parser.get<String>("config"));
- String framework = parser.get<String>("framework");
- int backendId = parser.get<int>("backend");
- int targetId = parser.get<int>("target");
- bool needSoftmax = parser.get<bool>("needSoftmax");
- std::cout<<"mean: "<<mean<<std::endl;
- std::cout<<"std: "<<std<<std::endl;
- // Open file with classes names.
- if (parser.has("classes"))
- {
- std::string file = parser.get<String>("classes");
- std::ifstream ifs(file.c_str());
- if (!ifs.is_open())
- CV_Error(Error::StsError, "File " + file + " not found");
- std::string line;
- while (std::getline(ifs, line))
- {
- classes.push_back(line);
- }
- }
- if (!parser.check())
- {
- parser.printErrors();
- return 1;
- }
- CV_Assert(!model.empty());
- //! [Read and initialize network]
- Net net = readNet(model, config, framework);
- net.setPreferableBackend(backendId);
- net.setPreferableTarget(targetId);
- //! [Read and initialize network]
- // Create a window
- static const std::string kWinName = "Deep learning image classification in OpenCV";
- namedWindow(kWinName, WINDOW_NORMAL);
- //! [Open a video file or an image file or a camera stream]
- VideoCapture cap;
- if (parser.has("input"))
- cap.open(parser.get<String>("input"));
- else
- cap.open(0);
- //! [Open a video file or an image file or a camera stream]
- // Process frames.
- Mat frame, blob;
- while (waitKey(1) < 0)
- {
- cap >> frame;
- if (frame.empty())
- {
- waitKey();
- break;
- }
- if (rszWidth != 0 && rszHeight != 0)
- {
- resize(frame, frame, Size(rszWidth, rszHeight));
- }
- //! [Create a 4D blob from a frame]
- blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, crop);
- // Check std values.
- if (std.val[0] != 0.0 && std.val[1] != 0.0 && std.val[2] != 0.0)
- {
- // Divide blob by std.
- divide(blob, std, blob);
- }
- //! [Create a 4D blob from a frame]
- //! [Set input blob]
- net.setInput(blob);
- //! [Set input blob]
- //! [Make forward pass]
- // double t_sum = 0.0;
- // double t;
- int classId;
- double confidence;
- cv::TickMeter timeRecorder;
- timeRecorder.reset();
- Mat prob = net.forward();
- double t1;
- timeRecorder.start();
- prob = net.forward();
- timeRecorder.stop();
- t1 = timeRecorder.getTimeMilli();
- timeRecorder.reset();
- for(int i = 0; i < 200; i++) {
- //! [Make forward pass]
- timeRecorder.start();
- prob = net.forward();
- timeRecorder.stop();
- //! [Get a class with a highest score]
- Point classIdPoint;
- minMaxLoc(prob.reshape(1, 1), 0, &confidence, 0, &classIdPoint);
- classId = classIdPoint.x;
- //! [Get a class with a highest score]
- // Put efficiency information.
- // std::vector<double> layersTimes;
- // double freq = getTickFrequency() / 1000;
- // t = net.getPerfProfile(layersTimes) / freq;
- // t_sum += t;
- }
- if (needSoftmax == true)
- {
- float maxProb = 0.0;
- float sum = 0.0;
- Mat softmaxProb;
- maxProb = *std::max_element(prob.begin<float>(), prob.end<float>());
- cv::exp(prob-maxProb, softmaxProb);
- sum = (float)cv::sum(softmaxProb)[0];
- softmaxProb /= sum;
- Point classIdPoint;
- minMaxLoc(softmaxProb.reshape(1, 1), 0, &confidence, 0, &classIdPoint);
- classId = classIdPoint.x;
- }
- std::string label = format("Inference time of 1 round: %.2f ms", t1);
- std::string label2 = format("Average time of 200 rounds: %.2f ms", timeRecorder.getTimeMilli()/200);
- putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
- putText(frame, label2, Point(0, 35), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
- // Print predicted class.
- label = format("%s: %.4f", (classes.empty() ? format("Class #%d", classId).c_str() :
- classes[classId].c_str()),
- confidence);
- putText(frame, label, Point(0, 55), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
- imshow(kWinName, frame);
- }
- return 0;
- }
|