12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- import os
- import numpy as np
- import cv2 as cv
- import argparse
- from common import findFile
- parser = argparse.ArgumentParser(description='Use this script to run action recognition using 3D ResNet34',
- formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- parser.add_argument('--input', '-i', help='Path to input video file. Skip this argument to capture frames from a camera.')
- parser.add_argument('--model', required=True, help='Path to model.')
- parser.add_argument('--classes', default=findFile('action_recongnition_kinetics.txt'), help='Path to classes list.')
- # To get net download original repository https://github.com/kenshohara/video-classification-3d-cnn-pytorch
- # For correct ONNX export modify file: video-classification-3d-cnn-pytorch/models/resnet.py
- # change
- # - def downsample_basic_block(x, planes, stride):
- # - out = F.avg_pool3d(x, kernel_size=1, stride=stride)
- # - zero_pads = torch.Tensor(out.size(0), planes - out.size(1),
- # - out.size(2), out.size(3),
- # - out.size(4)).zero_()
- # - if isinstance(out.data, torch.cuda.FloatTensor):
- # - zero_pads = zero_pads.cuda()
- # -
- # - out = Variable(torch.cat([out.data, zero_pads], dim=1))
- # - return out
- # To
- # + def downsample_basic_block(x, planes, stride):
- # + out = F.avg_pool3d(x, kernel_size=1, stride=stride)
- # + out = F.pad(out, (0, 0, 0, 0, 0, 0, 0, int(planes - out.size(1)), 0, 0), "constant", 0)
- # + return out
- # To ONNX export use torch.onnx.export(model, inputs, model_name)
- def get_class_names(path):
- class_names = []
- with open(path) as f:
- for row in f:
- class_names.append(row[:-1])
- return class_names
- def classify_video(video_path, net_path):
- SAMPLE_DURATION = 16
- SAMPLE_SIZE = 112
- mean = (114.7748, 107.7354, 99.4750)
- class_names = get_class_names(args.classes)
- net = cv.dnn.readNet(net_path)
- net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
- net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
- winName = 'Deep learning image classification in OpenCV'
- cv.namedWindow(winName, cv.WINDOW_AUTOSIZE)
- cap = cv.VideoCapture(video_path)
- while cv.waitKey(1) < 0:
- frames = []
- for _ in range(SAMPLE_DURATION):
- hasFrame, frame = cap.read()
- if not hasFrame:
- exit(0)
- frames.append(frame)
- inputs = cv.dnn.blobFromImages(frames, 1, (SAMPLE_SIZE, SAMPLE_SIZE), mean, True, crop=True)
- inputs = np.transpose(inputs, (1, 0, 2, 3))
- inputs = np.expand_dims(inputs, axis=0)
- net.setInput(inputs)
- outputs = net.forward()
- class_pred = np.argmax(outputs)
- label = class_names[class_pred]
- for frame in frames:
- labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
- cv.rectangle(frame, (0, 10 - labelSize[1]),
- (labelSize[0], 10 + baseLine), (255, 255, 255), cv.FILLED)
- cv.putText(frame, label, (0, 10), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
- cv.imshow(winName, frame)
- if cv.waitKey(1) & 0xFF == ord('q'):
- break
- if __name__ == "__main__":
- args, _ = parser.parse_known_args()
- classify_video(args.input if args.input else 0, args.model)
|