1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- #include <opencv2/ml/ml.hpp>
- using namespace std;
- using namespace cv;
- using namespace cv::ml;
- int main()
- {
- //create random training data
- Mat_<float> data(100, 100);
- randn(data, Mat::zeros(1, 1, data.type()), Mat::ones(1, 1, data.type()));
- //half of the samples for each class
- Mat_<float> responses(data.rows, 2);
- for (int i = 0; i<data.rows; ++i)
- {
- if (i < data.rows/2)
- {
- responses(i, 0) = 1;
- responses(i, 1) = 0;
- }
- else
- {
- responses(i, 0) = 0;
- responses(i, 1) = 1;
- }
- }
- /*
- //example code for just a single response (regression)
- Mat_<float> responses(data.rows, 1);
- for (int i=0; i<responses.rows; ++i)
- responses(i, 0) = i < responses.rows / 2 ? 0 : 1;
- */
- //create the neural network
- Mat_<int> layerSizes(1, 3);
- layerSizes(0, 0) = data.cols;
- layerSizes(0, 1) = 20;
- layerSizes(0, 2) = responses.cols;
- Ptr<ANN_MLP> network = ANN_MLP::create();
- network->setLayerSizes(layerSizes);
- network->setActivationFunction(ANN_MLP::SIGMOID_SYM, 0.1, 0.1);
- network->setTrainMethod(ANN_MLP::BACKPROP, 0.1, 0.1);
- Ptr<TrainData> trainData = TrainData::create(data, ROW_SAMPLE, responses);
- network->train(trainData);
- if (network->isTrained())
- {
- printf("Predict one-vector:\n");
- Mat result;
- network->predict(Mat::ones(1, data.cols, data.type()), result);
- cout << result << endl;
- printf("Predict training data:\n");
- for (int i=0; i<data.rows; ++i)
- {
- network->predict(data.row(i), result);
- cout << result << endl;
- }
- }
- return 0;
- }
|