123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 |
- #include "perf_precomp.hpp"
- #include "opencv2/imgcodecs.hpp"
- #include "opencv2/opencv_modules.hpp"
- #include "opencv2/flann.hpp"
- namespace opencv_test
- {
- using namespace perf;
- typedef TestBaseWithParam<size_t> FeaturesFinderVec;
- typedef TestBaseWithParam<string> match;
- typedef tuple<string, int> matchVector_t;
- typedef TestBaseWithParam<matchVector_t> matchVector;
- #define NUMBER_IMAGES testing::Values(1, 5, 20)
- #define SURF_MATCH_CONFIDENCE 0.65f
- #define ORB_MATCH_CONFIDENCE 0.3f
- #define WORK_MEGAPIX 0.6
- #if defined(HAVE_OPENCV_XFEATURES2D) && defined(OPENCV_ENABLE_NONFREE)
- #define TEST_DETECTORS testing::Values("surf", "orb")
- #else
- #define TEST_DETECTORS testing::Values<string>("orb")
- #endif
- PERF_TEST_P(FeaturesFinderVec, ParallelFeaturesFinder, NUMBER_IMAGES)
- {
- Mat img = imread( getDataPath("stitching/a1.png") );
- vector<Mat> imgs(GetParam(), img);
- vector<detail::ImageFeatures> features(imgs.size());
- Ptr<Feature2D> finder = ORB::create();
- TEST_CYCLE()
- {
- detail::computeImageFeatures(finder, imgs, features);
- }
- SANITY_CHECK_NOTHING();
- }
- PERF_TEST_P(FeaturesFinderVec, SerialFeaturesFinder, NUMBER_IMAGES)
- {
- Mat img = imread( getDataPath("stitching/a1.png") );
- vector<Mat> imgs(GetParam(), img);
- vector<detail::ImageFeatures> features(imgs.size());
- Ptr<Feature2D> finder = ORB::create();
- TEST_CYCLE()
- {
- for (size_t i = 0; i < imgs.size(); ++i)
- detail::computeImageFeatures(finder, imgs[i], features[i]);
- }
- SANITY_CHECK_NOTHING();
- }
- PERF_TEST_P( match, bestOf2Nearest, TEST_DETECTORS)
- {
- Mat img1, img1_full = imread( getDataPath("stitching/boat1.jpg") );
- Mat img2, img2_full = imread( getDataPath("stitching/boat2.jpg") );
- float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
- float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
- resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT);
- resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT);
- Ptr<Feature2D> finder = getFeatureFinder(GetParam());
- Ptr<detail::FeaturesMatcher> matcher;
- if (GetParam() == "surf")
- {
- matcher = makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);
- }
- else if (GetParam() == "orb")
- {
- matcher = makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE);
- }
- else
- {
- FAIL() << "Unknown 2D features type: " << GetParam();
- }
- detail::ImageFeatures features1, features2;
- detail::computeImageFeatures(finder, img1, features1);
- detail::computeImageFeatures(finder, img2, features2);
- detail::MatchesInfo pairwise_matches;
- declare.in(features1.descriptors, features2.descriptors);
- while(next())
- {
- cvflann::seed_random(42);//for predictive FlannBasedMatcher
- startTimer();
- (*matcher)(features1, features2, pairwise_matches);
- stopTimer();
- matcher->collectGarbage();
- }
- Mat dist (pairwise_matches.H, Range::all(), Range(2, 3));
- Mat R (pairwise_matches.H, Range::all(), Range(0, 2));
- // separate transform matrix, use lower error on rotations
- SANITY_CHECK(dist, 3., ERROR_ABSOLUTE);
- SANITY_CHECK(R, .06, ERROR_ABSOLUTE);
- }
- PERF_TEST_P( matchVector, bestOf2NearestVectorFeatures, testing::Combine(
- TEST_DETECTORS,
- testing::Values(2, 4, 8))
- )
- {
- Mat img1, img1_full = imread( getDataPath("stitching/boat1.jpg") );
- Mat img2, img2_full = imread( getDataPath("stitching/boat2.jpg") );
- float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
- float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
- resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT);
- resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT);
- string detectorName = get<0>(GetParam());
- int featuresVectorSize = get<1>(GetParam());
- Ptr<Feature2D> finder = getFeatureFinder(detectorName);
- Ptr<detail::FeaturesMatcher> matcher;
- if (detectorName == "surf")
- {
- matcher = makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);
- }
- else if (detectorName == "orb")
- {
- matcher = makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE);
- }
- else
- {
- FAIL() << "Unknown 2D features type: " << get<0>(GetParam());
- }
- detail::ImageFeatures features1, features2;
- detail::computeImageFeatures(finder, img1, features1);
- detail::computeImageFeatures(finder, img2, features2);
- vector<detail::ImageFeatures> features;
- vector<detail::MatchesInfo> pairwise_matches;
- for(int i = 0; i < featuresVectorSize/2; i++)
- {
- features.push_back(features1);
- features.push_back(features2);
- }
- declare.time(200);
- while(next())
- {
- cvflann::seed_random(42);//for predictive FlannBasedMatcher
- startTimer();
- (*matcher)(features, pairwise_matches);
- stopTimer();
- matcher->collectGarbage();
- }
- size_t matches_count = 0;
- for (size_t i = 0; i < pairwise_matches.size(); ++i)
- {
- if (pairwise_matches[i].src_img_idx < 0)
- continue;
- EXPECT_GT(pairwise_matches[i].matches.size(), 95u);
- EXPECT_FALSE(pairwise_matches[i].H.empty());
- ++matches_count;
- }
- EXPECT_GT(matches_count, 0u);
- SANITY_CHECK_NOTHING();
- }
- PERF_TEST_P( match, affineBestOf2Nearest, TEST_DETECTORS)
- {
- Mat img1, img1_full = imread( getDataPath("stitching/s1.jpg") );
- Mat img2, img2_full = imread( getDataPath("stitching/s2.jpg") );
- float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
- float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
- resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT);
- resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT);
- Ptr<Feature2D> finder = getFeatureFinder(GetParam());
- Ptr<detail::FeaturesMatcher> matcher;
- if (GetParam() == "surf")
- {
- matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false, false, SURF_MATCH_CONFIDENCE);
- }
- else if (GetParam() == "orb")
- {
- matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false, false, ORB_MATCH_CONFIDENCE);
- }
- else
- {
- FAIL() << "Unknown 2D features type: " << GetParam();
- }
- detail::ImageFeatures features1, features2;
- detail::computeImageFeatures(finder, img1, features1);
- detail::computeImageFeatures(finder, img2, features2);
- detail::MatchesInfo pairwise_matches;
- declare.in(features1.descriptors, features2.descriptors);
- while(next())
- {
- cvflann::seed_random(42);//for predictive FlannBasedMatcher
- startTimer();
- (*matcher)(features1, features2, pairwise_matches);
- stopTimer();
- matcher->collectGarbage();
- }
- // separate rotation and translation in transform matrix
- Mat T (pairwise_matches.H, Range(0, 2), Range(2, 3));
- Mat R (pairwise_matches.H, Range(0, 2), Range(0, 2));
- Mat h (pairwise_matches.H, Range(2, 3), Range::all());
- SANITY_CHECK(T, 5, ERROR_ABSOLUTE); // allow 5 pixels diff in translations
- SANITY_CHECK(R, .01, ERROR_ABSOLUTE); // rotations must be more precise
- // last row should be precisely (0, 0, 1) as it is just added for representation in homogeneous
- // coordinates
- EXPECT_DOUBLE_EQ(h.at<double>(0), 0.);
- EXPECT_DOUBLE_EQ(h.at<double>(1), 0.);
- EXPECT_DOUBLE_EQ(h.at<double>(2), 1.);
- }
- PERF_TEST_P( matchVector, affineBestOf2NearestVectorFeatures, testing::Combine(
- TEST_DETECTORS,
- testing::Values(2, 4, 8))
- )
- {
- Mat img1, img1_full = imread( getDataPath("stitching/s1.jpg") );
- Mat img2, img2_full = imread( getDataPath("stitching/s2.jpg") );
- float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
- float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
- resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT);
- resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT);
- string detectorName = get<0>(GetParam());
- int featuresVectorSize = get<1>(GetParam());
- Ptr<Feature2D> finder = getFeatureFinder(detectorName);
- Ptr<detail::FeaturesMatcher> matcher;
- if (detectorName == "surf")
- {
- matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false, false, SURF_MATCH_CONFIDENCE);
- }
- else if (detectorName == "orb")
- {
- matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false, false, ORB_MATCH_CONFIDENCE);
- }
- else
- {
- FAIL() << "Unknown 2D features type: " << get<0>(GetParam());
- }
- detail::ImageFeatures features1, features2;
- detail::computeImageFeatures(finder, img1, features1);
- detail::computeImageFeatures(finder, img2, features2);
- vector<detail::ImageFeatures> features;
- vector<detail::MatchesInfo> pairwise_matches;
- for(int i = 0; i < featuresVectorSize/2; i++)
- {
- features.push_back(features1);
- features.push_back(features2);
- }
- declare.time(200);
- while(next())
- {
- cvflann::seed_random(42);//for predictive FlannBasedMatcher
- startTimer();
- (*matcher)(features, pairwise_matches);
- stopTimer();
- matcher->collectGarbage();
- }
- size_t matches_count = 0;
- for (size_t i = 0; i < pairwise_matches.size(); ++i)
- {
- if (pairwise_matches[i].src_img_idx < 0)
- continue;
- EXPECT_GT(pairwise_matches[i].matches.size(), 150u);
- EXPECT_FALSE(pairwise_matches[i].H.empty());
- ++matches_count;
- }
- EXPECT_GT(matches_count, 0u);
- SANITY_CHECK_NOTHING();
- }
- } // namespace
|