123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- #include "perf_precomp.hpp"
- #include "opencv2/imgcodecs.hpp"
- #include "opencv2/opencv_modules.hpp"
- namespace opencv_test
- {
- using namespace perf;
- typedef TestBaseWithParam<tuple<string, string> > bundleAdjuster;
- #if defined(HAVE_OPENCV_XFEATURES2D) && defined(OPENCV_ENABLE_NONFREE)
- #define TEST_DETECTORS testing::Values("surf", "orb")
- #else
- #define TEST_DETECTORS testing::Values<string>("orb")
- #endif
- #define WORK_MEGAPIX 0.6
- #define AFFINE_FUNCTIONS testing::Values("affinePartial", "affine")
- PERF_TEST_P(bundleAdjuster, affine, testing::Combine(TEST_DETECTORS, AFFINE_FUNCTIONS))
- {
- Mat img1, img1_full = imread(getDataPath("stitching/s1.jpg"));
- Mat img2, img2_full = imread(getDataPath("stitching/s2.jpg"));
- float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
- float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
- resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT);
- resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT);
- string detector = get<0>(GetParam());
- string affine_fun = get<1>(GetParam());
- Ptr<Feature2D> finder = getFeatureFinder(detector);
- Ptr<detail::FeaturesMatcher> matcher;
- Ptr<detail::BundleAdjusterBase> bundle_adjuster;
- if (affine_fun == "affinePartial")
- {
- matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false);
- bundle_adjuster = makePtr<detail::BundleAdjusterAffinePartial>();
- }
- else if (affine_fun == "affine")
- {
- matcher = makePtr<detail::AffineBestOf2NearestMatcher>(true);
- bundle_adjuster = makePtr<detail::BundleAdjusterAffine>();
- }
- Ptr<detail::Estimator> estimator = makePtr<detail::AffineBasedEstimator>();
- std::vector<Mat> images;
- images.push_back(img1), images.push_back(img2);
- std::vector<detail::ImageFeatures> features;
- std::vector<detail::MatchesInfo> pairwise_matches;
- std::vector<detail::CameraParams> cameras;
- std::vector<detail::CameraParams> cameras2;
- computeImageFeatures(finder, images, features);
- (*matcher)(features, pairwise_matches);
- if (!(*estimator)(features, pairwise_matches, cameras))
- FAIL() << "estimation failed. this should never happen.";
- // this is currently required
- for (size_t i = 0; i < cameras.size(); ++i)
- {
- Mat R;
- cameras[i].R.convertTo(R, CV_32F);
- cameras[i].R = R;
- }
- cameras2 = cameras;
- bool success = true;
- while(next())
- {
- cameras = cameras2; // revert cameras back to original initial guess
- startTimer();
- success = (*bundle_adjuster)(features, pairwise_matches, cameras);
- stopTimer();
- }
- EXPECT_TRUE(success);
- EXPECT_TRUE(cameras.size() == 2);
- // fist camera should be just identity
- Mat &first = cameras[0].R;
- SANITY_CHECK(first, 1e-3, ERROR_ABSOLUTE);
- // second camera should be the estimated transform between images
- // separate rotation and translation in transform matrix
- Mat T_second (cameras[1].R, Range(0, 2), Range(2, 3));
- Mat R_second (cameras[1].R, Range(0, 2), Range(0, 2));
- Mat h (cameras[1].R, Range(2, 3), Range::all());
- SANITY_CHECK(T_second, 5, ERROR_ABSOLUTE); // allow 5 pixels diff in translations
- SANITY_CHECK(R_second, .01, ERROR_ABSOLUTE); // rotations must be more precise
- // last row should be precisely (0, 0, 1) as it is just added for representation in homogeneous
- // coordinates
- EXPECT_TRUE(h.type() == CV_32F);
- EXPECT_FLOAT_EQ(h.at<float>(0), 0.f);
- EXPECT_FLOAT_EQ(h.at<float>(1), 0.f);
- EXPECT_FLOAT_EQ(h.at<float>(2), 1.f);
- }
- } // namespace
|