123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- #!/usr/bin/env python
- from itertools import product
- from functools import reduce
- import numpy as np
- import cv2 as cv
- from tests_common import NewOpenCVTests
- def norm_inf(x, y=None):
- def norm(vec):
- return np.linalg.norm(vec.flatten(), np.inf)
- x = x.astype(np.float64)
- return norm(x) if y is None else norm(x - y.astype(np.float64))
- def norm_l1(x, y=None):
- def norm(vec):
- return np.linalg.norm(vec.flatten(), 1)
- x = x.astype(np.float64)
- return norm(x) if y is None else norm(x - y.astype(np.float64))
- def norm_l2(x, y=None):
- def norm(vec):
- return np.linalg.norm(vec.flatten())
- x = x.astype(np.float64)
- return norm(x) if y is None else norm(x - y.astype(np.float64))
- def norm_l2sqr(x, y=None):
- def norm(vec):
- return np.square(vec).sum()
- x = x.astype(np.float64)
- return norm(x) if y is None else norm(x - y.astype(np.float64))
- def norm_hamming(x, y=None):
- def norm(vec):
- return sum(bin(i).count('1') for i in vec.flatten())
- return norm(x) if y is None else norm(np.bitwise_xor(x, y))
- def norm_hamming2(x, y=None):
- def norm(vec):
- def element_norm(element):
- binary_str = bin(element).split('b')[-1]
- if len(binary_str) % 2 == 1:
- binary_str = '0' + binary_str
- gen = filter(lambda p: p != '00',
- (binary_str[i:i+2]
- for i in range(0, len(binary_str), 2)))
- return sum(1 for _ in gen)
- return sum(element_norm(element) for element in vec.flatten())
- return norm(x) if y is None else norm(np.bitwise_xor(x, y))
- norm_type_under_test = {
- cv.NORM_INF: norm_inf,
- cv.NORM_L1: norm_l1,
- cv.NORM_L2: norm_l2,
- cv.NORM_L2SQR: norm_l2sqr,
- cv.NORM_HAMMING: norm_hamming,
- cv.NORM_HAMMING2: norm_hamming2
- }
- norm_name = {
- cv.NORM_INF: 'inf',
- cv.NORM_L1: 'L1',
- cv.NORM_L2: 'L2',
- cv.NORM_L2SQR: 'L2SQR',
- cv.NORM_HAMMING: 'Hamming',
- cv.NORM_HAMMING2: 'Hamming2'
- }
- def get_element_types(norm_type):
- if norm_type in (cv.NORM_HAMMING, cv.NORM_HAMMING2):
- return (np.uint8,)
- else:
- return (np.uint8, np.int8, np.uint16, np.int16, np.int32, np.float32,
- np.float64)
- def generate_vector(shape, dtype):
- if np.issubdtype(dtype, np.integer):
- return np.random.randint(0, 100, shape).astype(dtype)
- else:
- return np.random.normal(10., 12.5, shape).astype(dtype)
- shapes = (1, 2, 3, 5, 7, 16, (1, 1), (2, 2), (3, 5), (1, 7))
- class norm_test(NewOpenCVTests):
- def test_norm_for_one_array(self):
- np.random.seed(123)
- for norm_type, norm in norm_type_under_test.items():
- element_types = get_element_types(norm_type)
- for shape, element_type in product(shapes, element_types):
- array = generate_vector(shape, element_type)
- expected = norm(array)
- actual = cv.norm(array, norm_type)
- self.assertAlmostEqual(
- expected, actual, places=2,
- msg='Array {0} of {1} and norm {2}'.format(
- array, element_type.__name__, norm_name[norm_type]
- )
- )
- def test_norm_for_two_arrays(self):
- np.random.seed(456)
- for norm_type, norm in norm_type_under_test.items():
- element_types = get_element_types(norm_type)
- for shape, element_type in product(shapes, element_types):
- first = generate_vector(shape, element_type)
- second = generate_vector(shape, element_type)
- expected = norm(first, second)
- actual = cv.norm(first, second, norm_type)
- self.assertAlmostEqual(
- expected, actual, places=2,
- msg='Arrays {0} {1} of type {2} and norm {3}'.format(
- first, second, element_type.__name__,
- norm_name[norm_type]
- )
- )
- def test_norm_fails_for_wrong_type(self):
- for norm_type in (cv.NORM_HAMMING, cv.NORM_HAMMING2):
- with self.assertRaises(Exception,
- msg='Type is not checked {0}'.format(
- norm_name[norm_type]
- )):
- cv.norm(np.array([1, 2], dtype=np.int32), norm_type)
- def test_norm_fails_for_array_and_scalar(self):
- for norm_type in norm_type_under_test:
- with self.assertRaises(Exception,
- msg='Exception is not thrown for {0}'.format(
- norm_name[norm_type]
- )):
- cv.norm(np.array([1, 2], dtype=np.uint8), 123, norm_type)
- def test_norm_fails_for_scalar_and_array(self):
- for norm_type in norm_type_under_test:
- with self.assertRaises(Exception,
- msg='Exception is not thrown for {0}'.format(
- norm_name[norm_type]
- )):
- cv.norm(4, np.array([1, 2], dtype=np.uint8), norm_type)
- def test_norm_fails_for_array_and_norm_type_as_scalar(self):
- for norm_type in norm_type_under_test:
- with self.assertRaises(Exception,
- msg='Exception is not thrown for {0}'.format(
- norm_name[norm_type]
- )):
- cv.norm(np.array([3, 4, 5], dtype=np.uint8),
- norm_type, normType=norm_type)
- if __name__ == '__main__':
- NewOpenCVTests.bootstrap()
|