123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- using cv::ml::SVM;
- using cv::ml::TrainData;
- static Ptr<TrainData> makeRandomData(int datasize)
- {
- cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
- cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
- RNG &rng = cv::theRNG();
- for (int i = 0; i < datasize; ++i)
- {
- int response = rng.uniform(0, 2); // Random from {0, 1}.
- samples.at<float>( i, 0 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
- samples.at<float>( i, 1 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
- responses.at<int>( i, 0 ) = response;
- }
- return TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
- }
- static Ptr<TrainData> makeCircleData(int datasize, float scale_factor, float radius)
- {
- // Populate samples with data that can be split into two concentric circles
- cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
- cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
- for (int i = 0; i < datasize; i+=2)
- {
- const float pi = 3.14159f;
- const float angle_rads = (i/datasize) * pi;
- const float x = radius * cos(angle_rads);
- const float y = radius * cos(angle_rads);
- // Larger circle
- samples.at<float>( i, 0 ) = x;
- samples.at<float>( i, 1 ) = y;
- responses.at<int>( i, 0 ) = 0;
- // Smaller circle
- samples.at<float>( i + 1, 0 ) = x * scale_factor;
- samples.at<float>( i + 1, 1 ) = y * scale_factor;
- responses.at<int>( i + 1, 0 ) = 1;
- }
- return TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
- }
- static Ptr<TrainData> makeRandomData2(int datasize)
- {
- cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
- cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
- RNG &rng = cv::theRNG();
- for (int i = 0; i < datasize; ++i)
- {
- int response = rng.uniform(0, 2); // Random from {0, 1}.
- samples.at<float>( i, 0 ) = 0;
- samples.at<float>( i, 1 ) = (0.5f - response) * rng.uniform(0.f, 1.2f) + response;
- responses.at<int>( i, 0 ) = response;
- }
- return TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
- }
- //==================================================================================================
- TEST(ML_SVM, trainauto)
- {
- const int datasize = 100;
- cv::Ptr<TrainData> data = makeRandomData(datasize);
- ASSERT_TRUE(data);
- cv::Ptr<SVM> svm = SVM::create();
- ASSERT_TRUE(svm);
- svm->trainAuto( data, 10 ); // 2-fold cross validation.
- float test_data0[2] = {0.25f, 0.25f};
- cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
- float result0 = svm->predict( test_point0 );
- float test_data1[2] = {0.75f, 0.75f};
- cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
- float result1 = svm->predict( test_point1 );
- EXPECT_NEAR(result0, 0, 0.001);
- EXPECT_NEAR(result1, 1, 0.001);
- }
- TEST(ML_SVM, trainauto_sigmoid)
- {
- const int datasize = 100;
- const float scale_factor = 0.5;
- const float radius = 2.0;
- cv::Ptr<TrainData> data = makeCircleData(datasize, scale_factor, radius);
- ASSERT_TRUE(data);
- cv::Ptr<SVM> svm = SVM::create();
- ASSERT_TRUE(svm);
- svm->setKernel(SVM::SIGMOID);
- svm->setGamma(10.0);
- svm->setCoef0(-10.0);
- svm->trainAuto( data, 10 ); // 2-fold cross validation.
- float test_data0[2] = {radius, radius};
- cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
- EXPECT_FLOAT_EQ(svm->predict( test_point0 ), 0);
- float test_data1[2] = {scale_factor * radius, scale_factor * radius};
- cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
- EXPECT_FLOAT_EQ(svm->predict( test_point1 ), 1);
- }
- TEST(ML_SVM, trainAuto_regression_5369)
- {
- const int datasize = 100;
- Ptr<TrainData> data = makeRandomData2(datasize);
- cv::Ptr<SVM> svm = SVM::create();
- svm->trainAuto( data, 10 ); // 2-fold cross validation.
- float test_data0[2] = {0.25f, 0.25f};
- cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
- float result0 = svm->predict( test_point0 );
- float test_data1[2] = {0.75f, 0.75f};
- cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
- float result1 = svm->predict( test_point1 );
- EXPECT_EQ(0., result0);
- EXPECT_EQ(1., result1);
- }
- TEST(ML_SVM, getSupportVectors)
- {
- // Set up training data
- int labels[4] = {1, -1, -1, -1};
- float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };
- Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
- Mat labelsMat(4, 1, CV_32SC1, labels);
- Ptr<SVM> svm = SVM::create();
- ASSERT_TRUE(svm);
- svm->setType(SVM::C_SVC);
- svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6));
- // Test retrieval of SVs and compressed SVs on linear SVM
- svm->setKernel(SVM::LINEAR);
- svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat);
- Mat sv = svm->getSupportVectors();
- EXPECT_EQ(1, sv.rows); // by default compressed SV returned
- sv = svm->getUncompressedSupportVectors();
- EXPECT_EQ(3, sv.rows);
- // Test retrieval of SVs and compressed SVs on non-linear SVM
- svm->setKernel(SVM::POLY);
- svm->setDegree(2);
- svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat);
- sv = svm->getSupportVectors();
- EXPECT_EQ(3, sv.rows);
- sv = svm->getUncompressedSupportVectors();
- EXPECT_EQ(0, sv.rows); // inapplicable for non-linear SVMs
- }
- }} // namespace
|