test_svmtrainauto.cpp 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. // This file is part of OpenCV project.
  2. // It is subject to the license terms in the LICENSE file found in the top-level directory
  3. // of this distribution and at http://opencv.org/license.html.
  4. #include "test_precomp.hpp"
  5. namespace opencv_test { namespace {
  6. using cv::ml::SVM;
  7. using cv::ml::TrainData;
  8. static Ptr<TrainData> makeRandomData(int datasize)
  9. {
  10. cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
  11. cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
  12. RNG &rng = cv::theRNG();
  13. for (int i = 0; i < datasize; ++i)
  14. {
  15. int response = rng.uniform(0, 2); // Random from {0, 1}.
  16. samples.at<float>( i, 0 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
  17. samples.at<float>( i, 1 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
  18. responses.at<int>( i, 0 ) = response;
  19. }
  20. return TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
  21. }
  22. static Ptr<TrainData> makeCircleData(int datasize, float scale_factor, float radius)
  23. {
  24. // Populate samples with data that can be split into two concentric circles
  25. cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
  26. cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
  27. for (int i = 0; i < datasize; i+=2)
  28. {
  29. const float pi = 3.14159f;
  30. const float angle_rads = (i/datasize) * pi;
  31. const float x = radius * cos(angle_rads);
  32. const float y = radius * cos(angle_rads);
  33. // Larger circle
  34. samples.at<float>( i, 0 ) = x;
  35. samples.at<float>( i, 1 ) = y;
  36. responses.at<int>( i, 0 ) = 0;
  37. // Smaller circle
  38. samples.at<float>( i + 1, 0 ) = x * scale_factor;
  39. samples.at<float>( i + 1, 1 ) = y * scale_factor;
  40. responses.at<int>( i + 1, 0 ) = 1;
  41. }
  42. return TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
  43. }
  44. static Ptr<TrainData> makeRandomData2(int datasize)
  45. {
  46. cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
  47. cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
  48. RNG &rng = cv::theRNG();
  49. for (int i = 0; i < datasize; ++i)
  50. {
  51. int response = rng.uniform(0, 2); // Random from {0, 1}.
  52. samples.at<float>( i, 0 ) = 0;
  53. samples.at<float>( i, 1 ) = (0.5f - response) * rng.uniform(0.f, 1.2f) + response;
  54. responses.at<int>( i, 0 ) = response;
  55. }
  56. return TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
  57. }
  58. //==================================================================================================
  59. TEST(ML_SVM, trainauto)
  60. {
  61. const int datasize = 100;
  62. cv::Ptr<TrainData> data = makeRandomData(datasize);
  63. ASSERT_TRUE(data);
  64. cv::Ptr<SVM> svm = SVM::create();
  65. ASSERT_TRUE(svm);
  66. svm->trainAuto( data, 10 ); // 2-fold cross validation.
  67. float test_data0[2] = {0.25f, 0.25f};
  68. cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
  69. float result0 = svm->predict( test_point0 );
  70. float test_data1[2] = {0.75f, 0.75f};
  71. cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
  72. float result1 = svm->predict( test_point1 );
  73. EXPECT_NEAR(result0, 0, 0.001);
  74. EXPECT_NEAR(result1, 1, 0.001);
  75. }
  76. TEST(ML_SVM, trainauto_sigmoid)
  77. {
  78. const int datasize = 100;
  79. const float scale_factor = 0.5;
  80. const float radius = 2.0;
  81. cv::Ptr<TrainData> data = makeCircleData(datasize, scale_factor, radius);
  82. ASSERT_TRUE(data);
  83. cv::Ptr<SVM> svm = SVM::create();
  84. ASSERT_TRUE(svm);
  85. svm->setKernel(SVM::SIGMOID);
  86. svm->setGamma(10.0);
  87. svm->setCoef0(-10.0);
  88. svm->trainAuto( data, 10 ); // 2-fold cross validation.
  89. float test_data0[2] = {radius, radius};
  90. cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
  91. EXPECT_FLOAT_EQ(svm->predict( test_point0 ), 0);
  92. float test_data1[2] = {scale_factor * radius, scale_factor * radius};
  93. cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
  94. EXPECT_FLOAT_EQ(svm->predict( test_point1 ), 1);
  95. }
  96. TEST(ML_SVM, trainAuto_regression_5369)
  97. {
  98. const int datasize = 100;
  99. Ptr<TrainData> data = makeRandomData2(datasize);
  100. cv::Ptr<SVM> svm = SVM::create();
  101. svm->trainAuto( data, 10 ); // 2-fold cross validation.
  102. float test_data0[2] = {0.25f, 0.25f};
  103. cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
  104. float result0 = svm->predict( test_point0 );
  105. float test_data1[2] = {0.75f, 0.75f};
  106. cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
  107. float result1 = svm->predict( test_point1 );
  108. EXPECT_EQ(0., result0);
  109. EXPECT_EQ(1., result1);
  110. }
  111. TEST(ML_SVM, getSupportVectors)
  112. {
  113. // Set up training data
  114. int labels[4] = {1, -1, -1, -1};
  115. float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };
  116. Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
  117. Mat labelsMat(4, 1, CV_32SC1, labels);
  118. Ptr<SVM> svm = SVM::create();
  119. ASSERT_TRUE(svm);
  120. svm->setType(SVM::C_SVC);
  121. svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6));
  122. // Test retrieval of SVs and compressed SVs on linear SVM
  123. svm->setKernel(SVM::LINEAR);
  124. svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat);
  125. Mat sv = svm->getSupportVectors();
  126. EXPECT_EQ(1, sv.rows); // by default compressed SV returned
  127. sv = svm->getUncompressedSupportVectors();
  128. EXPECT_EQ(3, sv.rows);
  129. // Test retrieval of SVs and compressed SVs on non-linear SVM
  130. svm->setKernel(SVM::POLY);
  131. svm->setDegree(2);
  132. svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat);
  133. sv = svm->getSupportVectors();
  134. EXPECT_EQ(3, sv.rows);
  135. sv = svm->getUncompressedSupportVectors();
  136. EXPECT_EQ(0, sv.rows); // inapplicable for non-linear SVMs
  137. }
  138. }} // namespace