123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- static const int TEST_VALUE_LIMIT = 500;
- enum
- {
- UNIFORM_SAME_SCALE,
- UNIFORM_DIFFERENT_SCALES
- };
- CV_ENUM(SVMSGD_TYPE, UNIFORM_SAME_SCALE, UNIFORM_DIFFERENT_SCALES)
- typedef std::vector< std::pair<float,float> > BorderList;
- static void makeData(RNG &rng, int samplesCount, const Mat &weights, float shift, const BorderList & borders, Mat &samples, Mat & responses)
- {
- int featureCount = weights.cols;
- samples.create(samplesCount, featureCount, CV_32FC1);
- for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
- rng.fill(samples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second);
- responses.create(samplesCount, 1, CV_32FC1);
- for (int i = 0 ; i < samplesCount; i++)
- {
- double res = samples.row(i).dot(weights) + shift;
- responses.at<float>(i) = res > 0 ? 1.f : -1.f;
- }
- }
- //==================================================================================================
- typedef tuple<SVMSGD_TYPE, int, double> ML_SVMSGD_Param;
- typedef testing::TestWithParam<ML_SVMSGD_Param> ML_SVMSGD_Params;
- TEST_P(ML_SVMSGD_Params, scale_and_features)
- {
- const int type = get<0>(GetParam());
- const int featureCount = get<1>(GetParam());
- const double precision = get<2>(GetParam());
- RNG &rng = cv::theRNG();
- Mat_<float> weights(1, featureCount);
- rng.fill(weights, RNG::UNIFORM, -1, 1);
- const float shift = static_cast<float>(rng.uniform(-featureCount, featureCount));
- BorderList borders;
- float lowerLimit = -TEST_VALUE_LIMIT;
- float upperLimit = TEST_VALUE_LIMIT;
- if (type == UNIFORM_SAME_SCALE)
- {
- for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
- borders.push_back(std::pair<float,float>(lowerLimit, upperLimit));
- }
- else if (type == UNIFORM_DIFFERENT_SCALES)
- {
- for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
- {
- int crit = rng.uniform(0, 2);
- if (crit > 0)
- borders.push_back(std::pair<float,float>(lowerLimit, upperLimit));
- else
- borders.push_back(std::pair<float,float>(lowerLimit/1000, upperLimit/1000));
- }
- }
- ASSERT_FALSE(borders.empty());
- Mat trainSamples;
- Mat trainResponses;
- int trainSamplesCount = 10000;
- makeData(rng, trainSamplesCount, weights, shift, borders, trainSamples, trainResponses);
- ASSERT_EQ(trainResponses.type(), CV_32FC1);
- Mat testSamples;
- Mat testResponses;
- int testSamplesCount = 100000;
- makeData(rng, testSamplesCount, weights, shift, borders, testSamples, testResponses);
- ASSERT_EQ(testResponses.type(), CV_32FC1);
- Ptr<TrainData> data = TrainData::create(trainSamples, cv::ml::ROW_SAMPLE, trainResponses);
- ASSERT_TRUE(data);
- cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
- ASSERT_TRUE(svmsgd);
- svmsgd->train(data);
- Mat responses;
- svmsgd->predict(testSamples, responses);
- ASSERT_EQ(responses.type(), CV_32FC1);
- ASSERT_EQ(responses.rows, testSamplesCount);
- int errCount = 0;
- for (int i = 0; i < testSamplesCount; i++)
- if (responses.at<float>(i) * testResponses.at<float>(i) < 0)
- errCount++;
- float err = (float)errCount / testSamplesCount;
- EXPECT_LE(err, precision);
- }
- ML_SVMSGD_Param params_list[] = {
- ML_SVMSGD_Param(UNIFORM_SAME_SCALE, 2, 0.01),
- ML_SVMSGD_Param(UNIFORM_SAME_SCALE, 5, 0.01),
- ML_SVMSGD_Param(UNIFORM_SAME_SCALE, 100, 0.02),
- ML_SVMSGD_Param(UNIFORM_DIFFERENT_SCALES, 2, 0.01),
- ML_SVMSGD_Param(UNIFORM_DIFFERENT_SCALES, 5, 0.01),
- ML_SVMSGD_Param(UNIFORM_DIFFERENT_SCALES, 100, 0.01),
- };
- INSTANTIATE_TEST_CASE_P(/**/, ML_SVMSGD_Params, testing::ValuesIn(params_list));
- //==================================================================================================
- TEST(ML_SVMSGD, twoPoints)
- {
- Mat samples(2, 2, CV_32FC1);
- samples.at<float>(0,0) = 0;
- samples.at<float>(0,1) = 0;
- samples.at<float>(1,0) = 1000;
- samples.at<float>(1,1) = 1;
- Mat responses(2, 1, CV_32FC1);
- responses.at<float>(0) = -1;
- responses.at<float>(1) = 1;
- cv::Ptr<TrainData> trainData = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses);
- Mat realWeights(1, 2, CV_32FC1);
- realWeights.at<float>(0) = 1000;
- realWeights.at<float>(1) = 1;
- float realShift = -500000.5;
- float normRealWeights = static_cast<float>(cv::norm(realWeights)); // TODO cvtest
- realWeights /= normRealWeights;
- realShift /= normRealWeights;
- cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
- svmsgd->setOptimalParameters();
- svmsgd->train( trainData );
- Mat foundWeights = svmsgd->getWeights();
- float foundShift = svmsgd->getShift();
- float normFoundWeights = static_cast<float>(cv::norm(foundWeights)); // TODO cvtest
- foundWeights /= normFoundWeights;
- foundShift /= normFoundWeights;
- EXPECT_LE(cv::norm(Mat(foundWeights - realWeights)), 0.001); // TODO cvtest
- EXPECT_LE(std::abs((foundShift - realShift) / realShift), 0.05);
- }
- }} // namespace
|