test_kmeans.cpp 1.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
  1. // This file is part of OpenCV project.
  2. // It is subject to the license terms in the LICENSE file found in the top-level directory
  3. // of this distribution and at http://opencv.org/license.html.
  4. #include "test_precomp.hpp"
  5. namespace opencv_test { namespace {
  6. TEST(ML_KMeans, accuracy)
  7. {
  8. const int iters = 100;
  9. int sizesArr[] = { 5000, 7000, 8000 };
  10. int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2];
  11. Mat data( pointsCount, 2, CV_32FC1 ), labels;
  12. vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
  13. Mat means;
  14. vector<Mat> covs;
  15. defaultDistribs( means, covs );
  16. generateData( data, labels, sizes, means, covs, CV_32FC1, CV_32SC1 );
  17. TermCriteria termCriteria( TermCriteria::COUNT, iters, 0.0);
  18. {
  19. SCOPED_TRACE("KMEANS_PP_CENTERS");
  20. float err = 1000;
  21. Mat bestLabels;
  22. kmeans( data, 3, bestLabels, termCriteria, 0, KMEANS_PP_CENTERS, noArray() );
  23. EXPECT_TRUE(calcErr( bestLabels, labels, sizes, err , false ));
  24. EXPECT_LE(err, 0.01f);
  25. }
  26. {
  27. SCOPED_TRACE("KMEANS_RANDOM_CENTERS");
  28. float err = 1000;
  29. Mat bestLabels;
  30. kmeans( data, 3, bestLabels, termCriteria, 0, KMEANS_RANDOM_CENTERS, noArray() );
  31. EXPECT_TRUE(calcErr( bestLabels, labels, sizes, err, false ));
  32. EXPECT_LE(err, 0.01f);
  33. }
  34. {
  35. SCOPED_TRACE("KMEANS_USE_INITIAL_LABELS");
  36. float err = 1000;
  37. Mat bestLabels;
  38. labels.copyTo( bestLabels );
  39. RNG &rng = cv::theRNG();
  40. for( int i = 0; i < 0.5f * pointsCount; i++ )
  41. bestLabels.at<int>( rng.next() % pointsCount, 0 ) = rng.next() % 3;
  42. kmeans( data, 3, bestLabels, termCriteria, 0, KMEANS_USE_INITIAL_LABELS, noArray() );
  43. EXPECT_TRUE(calcErr( bestLabels, labels, sizes, err, false ));
  44. EXPECT_LE(err, 0.01f);
  45. }
  46. }
  47. }} // namespace