123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- CV_ENUM(EM_START_STEP, EM::START_AUTO_STEP, EM::START_M_STEP, EM::START_E_STEP)
- CV_ENUM(EM_COV_MAT, EM::COV_MAT_GENERIC, EM::COV_MAT_DIAGONAL, EM::COV_MAT_SPHERICAL)
- typedef testing::TestWithParam< tuple<EM_START_STEP, EM_COV_MAT> > ML_EM_Params;
- TEST_P(ML_EM_Params, accuracy)
- {
- const int nclusters = 3;
- const int sizesArr[] = { 500, 700, 800 };
- const vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
- const int pointsCount = sizesArr[0] + sizesArr[1] + sizesArr[2];
- Mat means;
- vector<Mat> covs;
- defaultDistribs( means, covs, CV_64FC1 );
- Mat trainData(pointsCount, 2, CV_64FC1 );
- Mat trainLabels;
- generateData( trainData, trainLabels, sizes, means, covs, CV_64FC1, CV_32SC1 );
- Mat testData( pointsCount, 2, CV_64FC1 );
- Mat testLabels;
- generateData( testData, testLabels, sizes, means, covs, CV_64FC1, CV_32SC1 );
- Mat probs(trainData.rows, nclusters, CV_64FC1, cv::Scalar(1));
- Mat weights(1, nclusters, CV_64FC1, cv::Scalar(1));
- TermCriteria termCrit(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 100, FLT_EPSILON);
- int startStep = get<0>(GetParam());
- int covMatType = get<1>(GetParam());
- cv::Mat labels;
- Ptr<EM> em = EM::create();
- em->setClustersNumber(nclusters);
- em->setCovarianceMatrixType(covMatType);
- em->setTermCriteria(termCrit);
- if( startStep == EM::START_AUTO_STEP )
- em->trainEM( trainData, noArray(), labels, noArray() );
- else if( startStep == EM::START_E_STEP )
- em->trainE( trainData, means, covs, weights, noArray(), labels, noArray() );
- else if( startStep == EM::START_M_STEP )
- em->trainM( trainData, probs, noArray(), labels, noArray() );
- {
- SCOPED_TRACE("Train");
- float err = 1000;
- EXPECT_TRUE(calcErr( labels, trainLabels, sizes, err , false, false ));
- EXPECT_LE(err, 0.008f);
- }
- {
- SCOPED_TRACE("Test");
- float err = 1000;
- labels.create( testData.rows, 1, CV_32SC1 );
- for( int i = 0; i < testData.rows; i++ )
- {
- Mat sample = testData.row(i);
- Mat out_probs;
- labels.at<int>(i) = static_cast<int>(em->predict2( sample, out_probs )[1]);
- }
- EXPECT_TRUE(calcErr( labels, testLabels, sizes, err, false, false ));
- EXPECT_LE(err, 0.008f);
- }
- }
- INSTANTIATE_TEST_CASE_P(/**/, ML_EM_Params,
- testing::Combine(
- testing::Values(EM::START_AUTO_STEP, EM::START_M_STEP, EM::START_E_STEP),
- testing::Values(EM::COV_MAT_GENERIC, EM::COV_MAT_DIAGONAL, EM::COV_MAT_SPHERICAL)
- ));
- //==================================================================================================
- TEST(ML_EM, save_load)
- {
- const int nclusters = 2;
- Mat_<double> samples(3, 1);
- samples << 1., 2., 3.;
- std::vector<double> firstResult;
- string filename = cv::tempfile(".xml");
- {
- Mat labels;
- Ptr<EM> em = EM::create();
- em->setClustersNumber(nclusters);
- em->trainEM(samples, noArray(), labels, noArray());
- for( int i = 0; i < samples.rows; i++)
- {
- Vec2d res = em->predict2(samples.row(i), noArray());
- firstResult.push_back(res[1]);
- }
- {
- FileStorage fs = FileStorage(filename, FileStorage::WRITE);
- ASSERT_NO_THROW(fs << "em" << "{");
- ASSERT_NO_THROW(em->write(fs));
- ASSERT_NO_THROW(fs << "}");
- }
- }
- {
- Ptr<EM> em;
- ASSERT_NO_THROW(em = Algorithm::load<EM>(filename));
- for( int i = 0; i < samples.rows; i++)
- {
- SCOPED_TRACE(i);
- Vec2d res = em->predict2(samples.row(i), noArray());
- EXPECT_DOUBLE_EQ(firstResult[i], res[1]);
- }
- }
- remove(filename.c_str());
- }
- //==================================================================================================
- TEST(ML_EM, classification)
- {
- // This test classifies spam by the following way:
- // 1. estimates distributions of "spam" / "not spam"
- // 2. predict classID using Bayes classifier for estimated distributions.
- string dataFilename = findDataFile("spambase.data");
- Ptr<TrainData> data = TrainData::loadFromCSV(dataFilename, 0);
- ASSERT_FALSE(data.empty());
- Mat samples = data->getSamples();
- ASSERT_EQ(samples.cols, 57);
- Mat responses = data->getResponses();
- vector<int> trainSamplesMask(samples.rows, 0);
- const int trainSamplesCount = (int)(0.5f * samples.rows);
- const int testSamplesCount = samples.rows - trainSamplesCount;
- for(int i = 0; i < trainSamplesCount; i++)
- trainSamplesMask[i] = 1;
- RNG &rng = cv::theRNG();
- for(size_t i = 0; i < trainSamplesMask.size(); i++)
- {
- int i1 = rng(static_cast<unsigned>(trainSamplesMask.size()));
- int i2 = rng(static_cast<unsigned>(trainSamplesMask.size()));
- std::swap(trainSamplesMask[i1], trainSamplesMask[i2]);
- }
- Mat samples0, samples1;
- for(int i = 0; i < samples.rows; i++)
- {
- if(trainSamplesMask[i])
- {
- Mat sample = samples.row(i);
- int resp = (int)responses.at<float>(i);
- if(resp == 0)
- samples0.push_back(sample);
- else
- samples1.push_back(sample);
- }
- }
- Ptr<EM> model0 = EM::create();
- model0->setClustersNumber(3);
- model0->trainEM(samples0, noArray(), noArray(), noArray());
- Ptr<EM> model1 = EM::create();
- model1->setClustersNumber(3);
- model1->trainEM(samples1, noArray(), noArray(), noArray());
- // confusion matrices
- Mat_<int> trainCM(2, 2, 0);
- Mat_<int> testCM(2, 2, 0);
- const double lambda = 1.;
- for(int i = 0; i < samples.rows; i++)
- {
- Mat sample = samples.row(i);
- double sampleLogLikelihoods0 = model0->predict2(sample, noArray())[0];
- double sampleLogLikelihoods1 = model1->predict2(sample, noArray())[0];
- int classID = (sampleLogLikelihoods0 >= lambda * sampleLogLikelihoods1) ? 0 : 1;
- int resp = (int)responses.at<float>(i);
- EXPECT_TRUE(resp == 0 || resp == 1);
- if(trainSamplesMask[i])
- trainCM(resp, classID)++;
- else
- testCM(resp, classID)++;
- }
- EXPECT_LE((double)(trainCM(1,0) + trainCM(0,1)) / trainSamplesCount, 0.23);
- EXPECT_LE((double)(testCM(1,0) + testCM(0,1)) / testSamplesCount, 0.26);
- }
- }} // namespace
|