123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- #include "test_precomp.hpp"
- // #define GENERATE_TESTDATA
- namespace opencv_test { namespace {
- struct Activation
- {
- int id;
- const char * name;
- };
- void PrintTo(const Activation &a, std::ostream *os) { *os << a.name; }
- Activation activation_list[] =
- {
- { ml::ANN_MLP::IDENTITY, "identity" },
- { ml::ANN_MLP::SIGMOID_SYM, "sigmoid_sym" },
- { ml::ANN_MLP::GAUSSIAN, "gaussian" },
- { ml::ANN_MLP::RELU, "relu" },
- { ml::ANN_MLP::LEAKYRELU, "leakyrelu" },
- };
- typedef testing::TestWithParam< Activation > ML_ANN_Params;
- TEST_P(ML_ANN_Params, ActivationFunction)
- {
- const Activation &activation = GetParam();
- const string dataname = "waveform";
- const string data_path = findDataFile(dataname + ".data");
- const string model_name = dataname + "_" + activation.name + ".yml";
- Ptr<TrainData> tdata = TrainData::loadFromCSV(data_path, 0);
- ASSERT_FALSE(tdata.empty());
- // hack?
- const uint64 old_state = theRNG().state;
- theRNG().state = 1027401484159173092;
- tdata->setTrainTestSplit(500);
- theRNG().state = old_state;
- Mat_<int> layerSizes(1, 4);
- layerSizes(0, 0) = tdata->getNVars();
- layerSizes(0, 1) = 100;
- layerSizes(0, 2) = 100;
- layerSizes(0, 3) = tdata->getResponses().cols;
- Mat testSamples = tdata->getTestSamples();
- Mat rx, ry;
- {
- Ptr<ml::ANN_MLP> x = ml::ANN_MLP::create();
- x->setActivationFunction(activation.id);
- x->setLayerSizes(layerSizes);
- x->setTrainMethod(ml::ANN_MLP::RPROP, 0.01, 0.1);
- x->setTermCriteria(TermCriteria(TermCriteria::COUNT, 300, 0.01));
- x->train(tdata, ml::ANN_MLP::NO_OUTPUT_SCALE);
- ASSERT_TRUE(x->isTrained());
- x->predict(testSamples, rx);
- #ifdef GENERATE_TESTDATA
- x->save(cvtest::TS::ptr()->get_data_path() + model_name);
- #endif
- }
- {
- const string model_path = findDataFile(model_name);
- Ptr<ml::ANN_MLP> y = Algorithm::load<ANN_MLP>(model_path);
- ASSERT_TRUE(y);
- y->predict(testSamples, ry);
- EXPECT_MAT_NEAR(rx, ry, FLT_EPSILON);
- }
- }
- INSTANTIATE_TEST_CASE_P(/**/, ML_ANN_Params, testing::ValuesIn(activation_list));
- //==================================================================================================
- CV_ENUM(ANN_MLP_METHOD, ANN_MLP::RPROP, ANN_MLP::ANNEAL)
- typedef tuple<ANN_MLP_METHOD, string, int> ML_ANN_METHOD_Params;
- typedef TestWithParam<ML_ANN_METHOD_Params> ML_ANN_METHOD;
- TEST_P(ML_ANN_METHOD, Test)
- {
- int methodType = get<0>(GetParam());
- string methodName = get<1>(GetParam());
- int N = get<2>(GetParam());
- String folder = string(cvtest::TS::ptr()->get_data_path());
- String original_path = findDataFile("waveform.data");
- string dataname = "waveform_" + methodName;
- string weight_name = dataname + "_init_weight.yml.gz";
- string model_name = dataname + ".yml.gz";
- string response_name = dataname + "_response.yml.gz";
- Ptr<TrainData> tdata2 = TrainData::loadFromCSV(original_path, 0);
- ASSERT_FALSE(tdata2.empty());
- Mat samples = tdata2->getSamples()(Range(0, N), Range::all());
- Mat responses(N, 3, CV_32FC1, Scalar(0));
- for (int i = 0; i < N; i++)
- responses.at<float>(i, static_cast<int>(tdata2->getResponses().at<float>(i, 0))) = 1;
- Ptr<TrainData> tdata = TrainData::create(samples, ml::ROW_SAMPLE, responses);
- ASSERT_FALSE(tdata.empty());
- // hack?
- const uint64 old_state = theRNG().state;
- theRNG().state = 0;
- tdata->setTrainTestSplitRatio(0.8);
- theRNG().state = old_state;
- Mat testSamples = tdata->getTestSamples();
- // train 1st stage
- Ptr<ml::ANN_MLP> xx = ml::ANN_MLP::create();
- Mat_<int> layerSizes(1, 4);
- layerSizes(0, 0) = tdata->getNVars();
- layerSizes(0, 1) = 30;
- layerSizes(0, 2) = 30;
- layerSizes(0, 3) = tdata->getResponses().cols;
- xx->setLayerSizes(layerSizes);
- xx->setActivationFunction(ml::ANN_MLP::SIGMOID_SYM);
- xx->setTrainMethod(ml::ANN_MLP::RPROP);
- xx->setTermCriteria(TermCriteria(TermCriteria::COUNT, 1, 0.01));
- xx->train(tdata, ml::ANN_MLP::NO_OUTPUT_SCALE + ml::ANN_MLP::NO_INPUT_SCALE);
- #ifdef GENERATE_TESTDATA
- {
- FileStorage fs;
- fs.open(cvtest::TS::ptr()->get_data_path() + weight_name, FileStorage::WRITE + FileStorage::BASE64);
- xx->write(fs);
- }
- #endif
- // train 2nd stage
- Mat r_gold;
- Ptr<ml::ANN_MLP> x = ml::ANN_MLP::create();
- {
- const string weight_file = findDataFile(weight_name);
- FileStorage fs;
- fs.open(weight_file, FileStorage::READ);
- x->read(fs.root());
- }
- x->setTrainMethod(methodType);
- if (methodType == ml::ANN_MLP::ANNEAL)
- {
- x->setAnnealEnergyRNG(RNG(CV_BIG_INT(0xffffffff)));
- x->setAnnealInitialT(12);
- x->setAnnealFinalT(0.15);
- x->setAnnealCoolingRatio(0.96);
- x->setAnnealItePerStep(11);
- }
- x->setTermCriteria(TermCriteria(TermCriteria::COUNT, 100, 0.01));
- x->train(tdata, ml::ANN_MLP::NO_OUTPUT_SCALE + ml::ANN_MLP::NO_INPUT_SCALE + ml::ANN_MLP::UPDATE_WEIGHTS);
- ASSERT_TRUE(x->isTrained());
- #ifdef GENERATE_TESTDATA
- x->save(cvtest::TS::ptr()->get_data_path() + model_name);
- x->predict(testSamples, r_gold);
- {
- FileStorage fs_response(cvtest::TS::ptr()->get_data_path() + response_name, FileStorage::WRITE + FileStorage::BASE64);
- fs_response << "response" << r_gold;
- }
- #endif
- {
- const string response_file = findDataFile(response_name);
- FileStorage fs_response(response_file, FileStorage::READ);
- fs_response["response"] >> r_gold;
- }
- ASSERT_FALSE(r_gold.empty());
- // verify
- const string model_file = findDataFile(model_name);
- Ptr<ml::ANN_MLP> y = Algorithm::load<ANN_MLP>(model_file);
- ASSERT_TRUE(y);
- Mat rx, ry;
- for (int j = 0; j < 4; j++)
- {
- rx = x->getWeights(j);
- ry = y->getWeights(j);
- EXPECT_MAT_NEAR(rx, ry, FLT_EPSILON) << "Weights are not equal for layer: " << j;
- }
- x->predict(testSamples, rx);
- y->predict(testSamples, ry);
- EXPECT_MAT_NEAR(ry, rx, FLT_EPSILON) << "Predict are not equal to result of the saved model";
- EXPECT_MAT_NEAR(r_gold, rx, FLT_EPSILON) << "Predict are not equal to 'gold' response";
- }
- INSTANTIATE_TEST_CASE_P(/*none*/, ML_ANN_METHOD,
- testing::Values(
- ML_ANN_METHOD_Params(ml::ANN_MLP::RPROP, "rprop", 5000),
- ML_ANN_METHOD_Params(ml::ANN_MLP::ANNEAL, "anneal", 1000)
- // ML_ANN_METHOD_Params(ml::ANN_MLP::BACKPROP, "backprop", 500) -----> NO BACKPROP TEST
- )
- );
- }} // namespace
|