123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // Intel License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of Intel Corporation may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- #include "opencv2/ts/ocl_test.hpp"
- namespace opencv_test { namespace {
- #define OCL_TUNING_MODE 0
- #if OCL_TUNING_MODE
- #define OCL_TUNING_MODE_ONLY(code) code
- #else
- #define OCL_TUNING_MODE_ONLY(code)
- #endif
- // image moments
- class CV_MomentsTest : public cvtest::ArrayTest
- {
- public:
- CV_MomentsTest(bool try_umat);
- protected:
- enum { MOMENT_COUNT = 25 };
- int prepare_test_case( int test_case_idx );
- void prepare_to_validation( int /*test_case_idx*/ );
- void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
- void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
- double get_success_error_level( int test_case_idx, int i, int j );
- void run_func();
- bool is_binary;
- bool try_umat_;
- };
- CV_MomentsTest::CV_MomentsTest(bool try_umat) :
- try_umat_(try_umat)
- {
- test_array[INPUT].push_back(NULL);
- test_array[OUTPUT].push_back(NULL);
- test_array[REF_OUTPUT].push_back(NULL);
- is_binary = false;
- OCL_TUNING_MODE_ONLY(test_case_count = 10);
- //element_wise_relative_error = false;
- }
- void CV_MomentsTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
- {
- cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
- int depth = CV_MAT_DEPTH(type);
- if( depth == CV_16U )
- {
- low = Scalar::all(0);
- high = Scalar::all(1000);
- }
- else if( depth == CV_16S )
- {
- low = Scalar::all(-1000);
- high = Scalar::all(1000);
- }
- else if( depth == CV_32F )
- {
- low = Scalar::all(-1);
- high = Scalar::all(1);
- }
- }
- void CV_MomentsTest::get_test_array_types_and_sizes( int test_case_idx,
- vector<vector<Size> >& sizes, vector<vector<int> >& types )
- {
- RNG& rng = ts->get_rng();
- cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
- int depth = cvtest::randInt(rng) % 4;
- depth = depth == 0 ? CV_8U : depth == 1 ? CV_16U : depth == 2 ? CV_16S : CV_32F;
- is_binary = cvtest::randInt(rng) % 2 != 0;
- OCL_TUNING_MODE_ONLY(
- depth = CV_8U;
- is_binary = false;
- sizes[INPUT][0] = Size(1024,768)
- );
- types[INPUT][0] = CV_MAKETYPE(depth, 1);
- types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_64FC1;
- sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(MOMENT_COUNT,1);
- if(CV_MAT_DEPTH(types[INPUT][0])>=CV_32S)
- sizes[INPUT][0].width = MAX(sizes[INPUT][0].width, 3);
- cvmat_allowed = true;
- }
- double CV_MomentsTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
- {
- int depth = test_mat[INPUT][0].depth();
- return depth != CV_32F ? FLT_EPSILON*10 : FLT_EPSILON*100;
- }
- int CV_MomentsTest::prepare_test_case( int test_case_idx )
- {
- int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
- return code;
- }
- void CV_MomentsTest::run_func()
- {
- CvMoments* m = (CvMoments*)test_mat[OUTPUT][0].ptr<double>();
- double* others = (double*)(m + 1);
- if (try_umat_)
- {
- UMat u;
- test_mat[INPUT][0].clone().copyTo(u);
- OCL_TUNING_MODE_ONLY(
- static double ttime = 0;
- static int ncalls = 0;
- moments(u, is_binary != 0);
- double t = (double)getTickCount());
- Moments new_m = moments(u, is_binary != 0);
- OCL_TUNING_MODE_ONLY(
- ttime += (double)getTickCount() - t;
- ncalls++;
- printf("%g\n", ttime/ncalls/u.total()));
- *m = cvMoments(new_m);
- }
- else
- cvMoments( test_array[INPUT][0], m, is_binary );
- others[0] = cvGetNormalizedCentralMoment( m, 2, 0 );
- others[1] = cvGetNormalizedCentralMoment( m, 1, 1 );
- others[2] = cvGetNormalizedCentralMoment( m, 0, 2 );
- others[3] = cvGetNormalizedCentralMoment( m, 3, 0 );
- others[4] = cvGetNormalizedCentralMoment( m, 2, 1 );
- others[5] = cvGetNormalizedCentralMoment( m, 1, 2 );
- others[6] = cvGetNormalizedCentralMoment( m, 0, 3 );
- }
- void CV_MomentsTest::prepare_to_validation( int /*test_case_idx*/ )
- {
- Mat& src = test_mat[INPUT][0];
- CvMoments m = cvMoments();
- double* mdata = test_mat[REF_OUTPUT][0].ptr<double>();
- int depth = src.depth();
- int cn = src.channels();
- int i, y, x, cols = src.cols;
- double xc = 0., yc = 0.;
- int coi = 0;
- for( y = 0; y < src.rows; y++ )
- {
- double s0 = 0, s1 = 0, s2 = 0, s3 = 0;
- uchar* ptr = src.ptr(y);
- for( x = 0; x < cols; x++ )
- {
- double val;
- if( depth == CV_8U )
- val = ptr[x*cn + coi];
- else if( depth == CV_16U )
- val = ((ushort*)ptr)[x*cn + coi];
- else if( depth == CV_16S )
- val = ((short*)ptr)[x*cn + coi];
- else
- val = ((float*)ptr)[x*cn + coi];
- if( is_binary )
- val = val != 0;
- s0 += val;
- s1 += val*x;
- s2 += val*x*x;
- s3 += ((val*x)*x)*x;
- }
- m.m00 += s0;
- m.m01 += s0*y;
- m.m02 += (s0*y)*y;
- m.m03 += ((s0*y)*y)*y;
- m.m10 += s1;
- m.m11 += s1*y;
- m.m12 += (s1*y)*y;
- m.m20 += s2;
- m.m21 += s2*y;
- m.m30 += s3;
- }
- if( m.m00 != 0 )
- {
- xc = m.m10/m.m00, yc = m.m01/m.m00;
- m.inv_sqrt_m00 = 1./sqrt(fabs(m.m00));
- }
- for( y = 0; y < src.rows; y++ )
- {
- double s0 = 0, s1 = 0, s2 = 0, s3 = 0, y1 = y - yc;
- uchar* ptr = src.ptr(y);
- for( x = 0; x < cols; x++ )
- {
- double val, x1 = x - xc;
- if( depth == CV_8U )
- val = ptr[x*cn + coi];
- else if( depth == CV_16U )
- val = ((ushort*)ptr)[x*cn + coi];
- else if( depth == CV_16S )
- val = ((short*)ptr)[x*cn + coi];
- else
- val = ((float*)ptr)[x*cn + coi];
- if( is_binary )
- val = val != 0;
- s0 += val;
- s1 += val*x1;
- s2 += val*x1*x1;
- s3 += ((val*x1)*x1)*x1;
- }
- m.mu02 += s0*y1*y1;
- m.mu03 += ((s0*y1)*y1)*y1;
- m.mu11 += s1*y1;
- m.mu12 += (s1*y1)*y1;
- m.mu20 += s2;
- m.mu21 += s2*y1;
- m.mu30 += s3;
- }
- memcpy( mdata, &m, sizeof(m));
- mdata += sizeof(m)/sizeof(m.m00);
- /* calc normalized moments */
- {
- double inv_m00 = m.inv_sqrt_m00*m.inv_sqrt_m00;
- double s2 = inv_m00*inv_m00; /* 1./(m00 ^ (2/2 + 1)) */
- double s3 = s2*m.inv_sqrt_m00; /* 1./(m00 ^ (3/2 + 1)) */
- mdata[0] = m.mu20 * s2;
- mdata[1] = m.mu11 * s2;
- mdata[2] = m.mu02 * s2;
- mdata[3] = m.mu30 * s3;
- mdata[4] = m.mu21 * s3;
- mdata[5] = m.mu12 * s3;
- mdata[6] = m.mu03 * s3;
- }
- double* a = test_mat[REF_OUTPUT][0].ptr<double>();
- double* b = test_mat[OUTPUT][0].ptr<double>();
- for( i = 0; i < MOMENT_COUNT; i++ )
- {
- if( fabs(a[i]) < 1e-3 )
- a[i] = 0;
- if( fabs(b[i]) < 1e-3 )
- b[i] = 0;
- }
- }
- // Hu invariants
- class CV_HuMomentsTest : public cvtest::ArrayTest
- {
- public:
- CV_HuMomentsTest();
- protected:
- enum { MOMENT_COUNT = 18, HU_MOMENT_COUNT = 7 };
- int prepare_test_case( int test_case_idx );
- void prepare_to_validation( int /*test_case_idx*/ );
- void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
- void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
- double get_success_error_level( int test_case_idx, int i, int j );
- void run_func();
- };
- CV_HuMomentsTest::CV_HuMomentsTest()
- {
- test_array[INPUT].push_back(NULL);
- test_array[OUTPUT].push_back(NULL);
- test_array[REF_OUTPUT].push_back(NULL);
- }
- void CV_HuMomentsTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
- {
- cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
- low = Scalar::all(-10000);
- high = Scalar::all(10000);
- }
- void CV_HuMomentsTest::get_test_array_types_and_sizes( int test_case_idx,
- vector<vector<Size> >& sizes, vector<vector<int> >& types )
- {
- cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
- types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_64FC1;
- sizes[INPUT][0] = cvSize(MOMENT_COUNT,1);
- sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(HU_MOMENT_COUNT,1);
- }
- double CV_HuMomentsTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
- {
- return FLT_EPSILON;
- }
- int CV_HuMomentsTest::prepare_test_case( int test_case_idx )
- {
- int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
- if( code > 0 )
- {
- // ...
- }
- return code;
- }
- void CV_HuMomentsTest::run_func()
- {
- cvGetHuMoments( test_mat[INPUT][0].ptr<CvMoments>(),
- test_mat[OUTPUT][0].ptr<CvHuMoments>() );
- }
- void CV_HuMomentsTest::prepare_to_validation( int /*test_case_idx*/ )
- {
- CvMoments* m = test_mat[INPUT][0].ptr<CvMoments>();
- CvHuMoments* hu = test_mat[REF_OUTPUT][0].ptr<CvHuMoments>();
- double inv_m00 = m->inv_sqrt_m00*m->inv_sqrt_m00;
- double s2 = inv_m00*inv_m00; /* 1./(m00 ^ (2/2 + 1)) */
- double s3 = s2*m->inv_sqrt_m00; /* 1./(m00 ^ (3/2 + 1)) */
- double nu20 = m->mu20 * s2;
- double nu11 = m->mu11 * s2;
- double nu02 = m->mu02 * s2;
- double nu30 = m->mu30 * s3;
- double nu21 = m->mu21 * s3;
- double nu12 = m->mu12 * s3;
- double nu03 = m->mu03 * s3;
- #undef sqr
- #define sqr(a) ((a)*(a))
- hu->hu1 = nu20 + nu02;
- hu->hu2 = sqr(nu20 - nu02) + 4*sqr(nu11);
- hu->hu3 = sqr(nu30 - 3*nu12) + sqr(3*nu21 - nu03);
- hu->hu4 = sqr(nu30 + nu12) + sqr(nu21 + nu03);
- hu->hu5 = (nu30 - 3*nu12)*(nu30 + nu12)*(sqr(nu30 + nu12) - 3*sqr(nu21 + nu03)) +
- (3*nu21 - nu03)*(nu21 + nu03)*(3*sqr(nu30 + nu12) - sqr(nu21 + nu03));
- hu->hu6 = (nu20 - nu02)*(sqr(nu30 + nu12) - sqr(nu21 + nu03)) +
- 4*nu11*(nu30 + nu12)*(nu21 + nu03);
- hu->hu7 = (3*nu21 - nu03)*(nu30 + nu12)*(sqr(nu30 + nu12) - 3*sqr(nu21 + nu03)) +
- (3*nu12 - nu30)*(nu21 + nu03)*(3*sqr(nu30 + nu12) - sqr(nu21 + nu03));
- }
- TEST(Imgproc_Moments, accuracy) { CV_MomentsTest test(false); test.safe_run(); }
- OCL_TEST(Imgproc_Moments, accuracy) { CV_MomentsTest test(true); test.safe_run(); }
- TEST(Imgproc_HuMoments, accuracy) { CV_HuMomentsTest test; test.safe_run(); }
- class CV_SmallContourMomentTest : public cvtest::BaseTest
- {
- public:
- CV_SmallContourMomentTest() {}
- ~CV_SmallContourMomentTest() {}
- protected:
- void run(int)
- {
- try
- {
- vector<Point> points;
- points.push_back(Point(50, 56));
- points.push_back(Point(53, 53));
- points.push_back(Point(46, 54));
- points.push_back(Point(49, 51));
- Moments m = moments(points, false);
- double area = contourArea(points);
- CV_Assert( m.m00 == 0 && m.m01 == 0 && m.m10 == 0 && area == 0 );
- }
- catch(...)
- {
- ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
- }
- }
- };
- TEST(Imgproc_ContourMoment, small) { CV_SmallContourMomentTest test; test.safe_run(); }
- }} // namespace
|