1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // Intel License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of Intel Corporation may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- class CV_ImgWarpBaseTest : public cvtest::ArrayTest
- {
- public:
- CV_ImgWarpBaseTest( bool warp_matrix );
- protected:
- int read_params( const cv::FileStorage& fs );
- int prepare_test_case( int test_case_idx );
- void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
- void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
- void fill_array( int test_case_idx, int i, int j, Mat& arr );
- int interpolation;
- int max_interpolation;
- double spatial_scale_zoom, spatial_scale_decimate;
- };
- CV_ImgWarpBaseTest::CV_ImgWarpBaseTest( bool warp_matrix )
- {
- test_array[INPUT].push_back(NULL);
- if( warp_matrix )
- test_array[INPUT].push_back(NULL);
- test_array[INPUT_OUTPUT].push_back(NULL);
- test_array[REF_INPUT_OUTPUT].push_back(NULL);
- max_interpolation = 5;
- interpolation = 0;
- element_wise_relative_error = false;
- spatial_scale_zoom = 0.01;
- spatial_scale_decimate = 0.005;
- }
- int CV_ImgWarpBaseTest::read_params( const cv::FileStorage& fs )
- {
- int code = cvtest::ArrayTest::read_params( fs );
- return code;
- }
- void CV_ImgWarpBaseTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
- {
- cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
- if( CV_MAT_DEPTH(type) == CV_32F )
- {
- low = Scalar::all(-10.);
- high = Scalar::all(10);
- }
- }
- void CV_ImgWarpBaseTest::get_test_array_types_and_sizes( int test_case_idx,
- vector<vector<Size> >& sizes, vector<vector<int> >& types )
- {
- RNG& rng = ts->get_rng();
- int depth = cvtest::randInt(rng) % 3;
- int cn = cvtest::randInt(rng) % 3 + 1;
- cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
- depth = depth == 0 ? CV_8U : depth == 1 ? CV_16U : CV_32F;
- cn += cn == 2;
- types[INPUT][0] = types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(depth, cn);
- if( test_array[INPUT].size() > 1 )
- types[INPUT][1] = cvtest::randInt(rng) & 1 ? CV_32FC1 : CV_64FC1;
- interpolation = cvtest::randInt(rng) % max_interpolation;
- }
- void CV_ImgWarpBaseTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
- {
- if( i != INPUT || j != 0 )
- cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr );
- }
- int CV_ImgWarpBaseTest::prepare_test_case( int test_case_idx )
- {
- int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
- Mat& img = test_mat[INPUT][0];
- int i, j, cols = img.cols;
- int type = img.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
- double scale = depth == CV_16U ? 1000. : 255.*0.5;
- double space_scale = spatial_scale_decimate;
- vector<float> buffer(img.cols*cn);
- if( code <= 0 )
- return code;
- if( test_mat[INPUT_OUTPUT][0].cols >= img.cols &&
- test_mat[INPUT_OUTPUT][0].rows >= img.rows )
- space_scale = spatial_scale_zoom;
- for( i = 0; i < img.rows; i++ )
- {
- uchar* ptr = img.ptr(i);
- switch( cn )
- {
- case 1:
- for( j = 0; j < cols; j++ )
- buffer[j] = (float)((sin((i+1)*space_scale)*sin((j+1)*space_scale)+1.)*scale);
- break;
- case 2:
- for( j = 0; j < cols; j++ )
- {
- buffer[j*2] = (float)((sin((i+1)*space_scale)+1.)*scale);
- buffer[j*2+1] = (float)((sin((i+j)*space_scale)+1.)*scale);
- }
- break;
- case 3:
- for( j = 0; j < cols; j++ )
- {
- buffer[j*3] = (float)((sin((i+1)*space_scale)+1.)*scale);
- buffer[j*3+1] = (float)((sin(j*space_scale)+1.)*scale);
- buffer[j*3+2] = (float)((sin((i+j)*space_scale)+1.)*scale);
- }
- break;
- case 4:
- for( j = 0; j < cols; j++ )
- {
- buffer[j*4] = (float)((sin((i+1)*space_scale)+1.)*scale);
- buffer[j*4+1] = (float)((sin(j*space_scale)+1.)*scale);
- buffer[j*4+2] = (float)((sin((i+j)*space_scale)+1.)*scale);
- buffer[j*4+3] = (float)((sin((i-j)*space_scale)+1.)*scale);
- }
- break;
- default:
- CV_Assert(0);
- }
- /*switch( depth )
- {
- case CV_8U:
- for( j = 0; j < cols*cn; j++ )
- ptr[j] = (uchar)cvRound(buffer[j]);
- break;
- case CV_16U:
- for( j = 0; j < cols*cn; j++ )
- ((ushort*)ptr)[j] = (ushort)cvRound(buffer[j]);
- break;
- case CV_32F:
- for( j = 0; j < cols*cn; j++ )
- ((float*)ptr)[j] = (float)buffer[j];
- break;
- default:
- CV_Assert(0);
- }*/
- cv::Mat src(1, cols*cn, CV_32F, &buffer[0]);
- cv::Mat dst(1, cols*cn, depth, ptr);
- src.convertTo(dst, dst.type());
- }
- return code;
- }
- /////////////////////////
- class CV_ResizeTest : public CV_ImgWarpBaseTest
- {
- public:
- CV_ResizeTest();
- protected:
- void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
- void run_func();
- void prepare_to_validation( int /*test_case_idx*/ );
- double get_success_error_level( int test_case_idx, int i, int j );
- };
- CV_ResizeTest::CV_ResizeTest() : CV_ImgWarpBaseTest( false )
- {
- }
- void CV_ResizeTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
- {
- RNG& rng = ts->get_rng();
- CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
- Size sz;
- sz.width = (cvtest::randInt(rng) % sizes[INPUT][0].width) + 1;
- sz.height = (cvtest::randInt(rng) % sizes[INPUT][0].height) + 1;
- if( cvtest::randInt(rng) & 1 )
- {
- int xfactor = cvtest::randInt(rng) % 10 + 1;
- int yfactor = cvtest::randInt(rng) % 10 + 1;
- if( cvtest::randInt(rng) & 1 )
- yfactor = xfactor;
- sz.width = sizes[INPUT][0].width / xfactor;
- sz.width = MAX(sz.width,1);
- sz.height = sizes[INPUT][0].height / yfactor;
- sz.height = MAX(sz.height,1);
- sizes[INPUT][0].width = sz.width * xfactor;
- sizes[INPUT][0].height = sz.height * yfactor;
- }
- if( cvtest::randInt(rng) & 1 )
- sizes[INPUT_OUTPUT][0] = sizes[REF_INPUT_OUTPUT][0] = sz;
- else
- {
- sizes[INPUT_OUTPUT][0] = sizes[REF_INPUT_OUTPUT][0] = sizes[INPUT][0];
- sizes[INPUT][0] = sz;
- }
- if( interpolation == 4 &&
- (MIN(sizes[INPUT][0].width,sizes[INPUT_OUTPUT][0].width) < 4 ||
- MIN(sizes[INPUT][0].height,sizes[INPUT_OUTPUT][0].height) < 4))
- interpolation = 2;
- }
- void CV_ResizeTest::run_func()
- {
- cvResize( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], interpolation );
- }
- double CV_ResizeTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
- {
- int depth = test_mat[INPUT][0].depth();
- return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 1e-1;
- }
- void CV_ResizeTest::prepare_to_validation( int /*test_case_idx*/ )
- {
- CvMat _src = cvMat(test_mat[INPUT][0]), _dst = cvMat(test_mat[REF_INPUT_OUTPUT][0]);
- CvMat *src = &_src, *dst = &_dst;
- int i, j, k;
- CvMat* x_idx = cvCreateMat( 1, dst->cols, CV_32SC1 );
- CvMat* y_idx = cvCreateMat( 1, dst->rows, CV_32SC1 );
- int* x_tab = x_idx->data.i;
- int elem_size = CV_ELEM_SIZE(src->type);
- int drows = dst->rows, dcols = dst->cols;
- if( interpolation == CV_INTER_NN )
- {
- for( j = 0; j < dcols; j++ )
- {
- int t = (j*src->cols*2 + MIN(src->cols,dcols) - 1)/(dcols*2);
- t -= t >= src->cols;
- x_idx->data.i[j] = t*elem_size;
- }
- for( j = 0; j < drows; j++ )
- {
- int t = (j*src->rows*2 + MIN(src->rows,drows) - 1)/(drows*2);
- t -= t >= src->rows;
- y_idx->data.i[j] = t;
- }
- }
- else
- {
- double scale_x = (double)src->cols/dcols;
- double scale_y = (double)src->rows/drows;
- for( j = 0; j < dcols; j++ )
- {
- double f = ((j+0.5)*scale_x - 0.5);
- i = cvRound(f);
- x_idx->data.i[j] = (i < 0 ? 0 : i >= src->cols ? src->cols - 1 : i)*elem_size;
- }
- for( j = 0; j < drows; j++ )
- {
- double f = ((j+0.5)*scale_y - 0.5);
- i = cvRound(f);
- y_idx->data.i[j] = i < 0 ? 0 : i >= src->rows ? src->rows - 1 : i;
- }
- }
- for( i = 0; i < drows; i++ )
- {
- uchar* dptr = dst->data.ptr + dst->step*i;
- const uchar* sptr0 = src->data.ptr + src->step*y_idx->data.i[i];
- for( j = 0; j < dcols; j++, dptr += elem_size )
- {
- const uchar* sptr = sptr0 + x_tab[j];
- for( k = 0; k < elem_size; k++ )
- dptr[k] = sptr[k];
- }
- }
- cvReleaseMat( &x_idx );
- cvReleaseMat( &y_idx );
- }
- class CV_ResizeExactTest : public CV_ResizeTest
- {
- public:
- CV_ResizeExactTest();
- protected:
- void get_test_array_types_and_sizes(int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types);
- };
- CV_ResizeExactTest::CV_ResizeExactTest() : CV_ResizeTest()
- {
- max_interpolation = 2;
- }
- void CV_ResizeExactTest::get_test_array_types_and_sizes(int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types)
- {
- CV_ResizeTest::get_test_array_types_and_sizes(test_case_idx, sizes, types);
- switch (interpolation)
- {
- case 0:
- interpolation = INTER_LINEAR_EXACT;
- break;
- case 1:
- interpolation = INTER_NEAREST_EXACT;
- break;
- default:
- CV_Assert(interpolation < max_interpolation);
- }
- if (CV_MAT_DEPTH(types[INPUT][0]) == CV_32F ||
- CV_MAT_DEPTH(types[INPUT][0]) == CV_64F)
- types[INPUT][0] = types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(CV_8U, CV_MAT_CN(types[INPUT][0]));
- }
- /////////////////////////
- static void test_remap( const Mat& src, Mat& dst, const Mat& mapx, const Mat& mapy,
- Mat* mask=0, int interpolation=CV_INTER_LINEAR )
- {
- int x, y, k;
- int drows = dst.rows, dcols = dst.cols;
- int srows = src.rows, scols = src.cols;
- const uchar* sptr0 = src.ptr();
- int depth = src.depth(), cn = src.channels();
- int elem_size = (int)src.elemSize();
- int step = (int)(src.step / CV_ELEM_SIZE(depth));
- int delta;
- if( interpolation != CV_INTER_CUBIC )
- {
- delta = 0;
- scols -= 1; srows -= 1;
- }
- else
- {
- delta = 1;
- scols = MAX(scols - 3, 0);
- srows = MAX(srows - 3, 0);
- }
- int scols1 = MAX(scols - 2, 0);
- int srows1 = MAX(srows - 2, 0);
- if( mask )
- *mask = Scalar::all(0);
- for( y = 0; y < drows; y++ )
- {
- uchar* dptr = dst.ptr(y);
- const float* mx = mapx.ptr<float>(y);
- const float* my = mapy.ptr<float>(y);
- uchar* m = mask ? mask->ptr(y) : 0;
- for( x = 0; x < dcols; x++, dptr += elem_size )
- {
- float xs = mx[x];
- float ys = my[x];
- int ixs = cvFloor(xs);
- int iys = cvFloor(ys);
- if( (unsigned)(ixs - delta - 1) >= (unsigned)scols1 ||
- (unsigned)(iys - delta - 1) >= (unsigned)srows1 )
- {
- if( m )
- m[x] = 1;
- if( (unsigned)(ixs - delta) >= (unsigned)scols ||
- (unsigned)(iys - delta) >= (unsigned)srows )
- continue;
- }
- xs -= ixs;
- ys -= iys;
- switch( depth )
- {
- case CV_8U:
- {
- const uchar* sptr = sptr0 + iys*step + ixs*cn;
- for( k = 0; k < cn; k++ )
- {
- float v00 = sptr[k];
- float v01 = sptr[cn + k];
- float v10 = sptr[step + k];
- float v11 = sptr[step + cn + k];
- v00 = v00 + xs*(v01 - v00);
- v10 = v10 + xs*(v11 - v10);
- v00 = v00 + ys*(v10 - v00);
- dptr[k] = (uchar)cvRound(v00);
- }
- }
- break;
- case CV_16U:
- {
- const ushort* sptr = (const ushort*)sptr0 + iys*step + ixs*cn;
- for( k = 0; k < cn; k++ )
- {
- float v00 = sptr[k];
- float v01 = sptr[cn + k];
- float v10 = sptr[step + k];
- float v11 = sptr[step + cn + k];
- v00 = v00 + xs*(v01 - v00);
- v10 = v10 + xs*(v11 - v10);
- v00 = v00 + ys*(v10 - v00);
- ((ushort*)dptr)[k] = (ushort)cvRound(v00);
- }
- }
- break;
- case CV_32F:
- {
- const float* sptr = (const float*)sptr0 + iys*step + ixs*cn;
- for( k = 0; k < cn; k++ )
- {
- float v00 = sptr[k];
- float v01 = sptr[cn + k];
- float v10 = sptr[step + k];
- float v11 = sptr[step + cn + k];
- v00 = v00 + xs*(v01 - v00);
- v10 = v10 + xs*(v11 - v10);
- v00 = v00 + ys*(v10 - v00);
- ((float*)dptr)[k] = (float)v00;
- }
- }
- break;
- default:
- CV_Assert(0);
- }
- }
- }
- }
- /////////////////////////
- class CV_WarpAffineTest : public CV_ImgWarpBaseTest
- {
- public:
- CV_WarpAffineTest();
- protected:
- void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
- void run_func();
- int prepare_test_case( int test_case_idx );
- void prepare_to_validation( int /*test_case_idx*/ );
- double get_success_error_level( int test_case_idx, int i, int j );
- };
- CV_WarpAffineTest::CV_WarpAffineTest() : CV_ImgWarpBaseTest( true )
- {
- //spatial_scale_zoom = spatial_scale_decimate;
- spatial_scale_decimate = spatial_scale_zoom;
- }
- void CV_WarpAffineTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
- {
- CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
- Size sz = sizes[INPUT][0];
- // run for the second time to get output of a different size
- CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
- sizes[INPUT][0] = sz;
- sizes[INPUT][1] = Size( 3, 2 );
- }
- void CV_WarpAffineTest::run_func()
- {
- CvMat mtx = cvMat(test_mat[INPUT][1]);
- cvWarpAffine( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], &mtx, interpolation );
- }
- double CV_WarpAffineTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
- {
- int depth = test_mat[INPUT][0].depth();
- return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 5e-2;
- }
- int CV_WarpAffineTest::prepare_test_case( int test_case_idx )
- {
- RNG& rng = ts->get_rng();
- int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
- const Mat& src = test_mat[INPUT][0];
- const Mat& dst = test_mat[INPUT_OUTPUT][0];
- Mat& mat = test_mat[INPUT][1];
- Point2f center;
- double scale, angle;
- if( code <= 0 )
- return code;
- double buffer[6];
- Mat tmp( 2, 3, mat.type(), buffer );
- center.x = (float)((cvtest::randReal(rng)*1.2 - 0.1)*src.cols);
- center.y = (float)((cvtest::randReal(rng)*1.2 - 0.1)*src.rows);
- angle = cvtest::randReal(rng)*360;
- scale = ((double)dst.rows/src.rows + (double)dst.cols/src.cols)*0.5;
- getRotationMatrix2D(center, angle, scale).convertTo(mat, mat.depth());
- rng.fill( tmp, CV_RAND_NORMAL, Scalar::all(1.), Scalar::all(0.01) );
- cv::max(tmp, 0.9, tmp);
- cv::min(tmp, 1.1, tmp);
- cv::multiply(tmp, mat, mat, 1.);
- return code;
- }
- void CV_WarpAffineTest::prepare_to_validation( int /*test_case_idx*/ )
- {
- const Mat& src = test_mat[INPUT][0];
- Mat& dst = test_mat[REF_INPUT_OUTPUT][0];
- Mat& dst0 = test_mat[INPUT_OUTPUT][0];
- Mat mapx(dst.size(), CV_32F), mapy(dst.size(), CV_32F);
- double m[6];
- Mat srcAb, dstAb( 2, 3, CV_64FC1, m );
- //cvInvert( &tM, &M, CV_LU );
- // [R|t] -> [R^-1 | -(R^-1)*t]
- test_mat[INPUT][1].convertTo( srcAb, CV_64F );
- Mat A = srcAb.colRange(0, 2);
- Mat b = srcAb.col(2);
- Mat invA = dstAb.colRange(0, 2);
- Mat invAb = dstAb.col(2);
- cv::invert(A, invA, CV_SVD);
- cv::gemm(invA, b, -1, Mat(), 0, invAb);
- for( int y = 0; y < dst.rows; y++ )
- for( int x = 0; x < dst.cols; x++ )
- {
- mapx.at<float>(y, x) = (float)(x*m[0] + y*m[1] + m[2]);
- mapy.at<float>(y, x) = (float)(x*m[3] + y*m[4] + m[5]);
- }
- Mat mask( dst.size(), CV_8U );
- test_remap( src, dst, mapx, mapy, &mask );
- dst.setTo(Scalar::all(0), mask);
- dst0.setTo(Scalar::all(0), mask);
- }
- /////////////////////////
- class CV_WarpPerspectiveTest : public CV_ImgWarpBaseTest
- {
- public:
- CV_WarpPerspectiveTest();
- protected:
- void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
- void run_func();
- int prepare_test_case( int test_case_idx );
- void prepare_to_validation( int /*test_case_idx*/ );
- double get_success_error_level( int test_case_idx, int i, int j );
- };
- CV_WarpPerspectiveTest::CV_WarpPerspectiveTest() : CV_ImgWarpBaseTest( true )
- {
- //spatial_scale_zoom = spatial_scale_decimate;
- spatial_scale_decimate = spatial_scale_zoom;
- }
- void CV_WarpPerspectiveTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
- {
- CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
- Size sz = sizes[INPUT][0];
- // run for the second time to get output of a different size
- CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
- sizes[INPUT][0] = sz;
- sizes[INPUT][1] = Size( 3, 3 );
- }
- void CV_WarpPerspectiveTest::run_func()
- {
- CvMat mtx = cvMat(test_mat[INPUT][1]);
- cvWarpPerspective( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], &mtx, interpolation );
- }
- double CV_WarpPerspectiveTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
- {
- int depth = test_mat[INPUT][0].depth();
- return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 5e-2;
- }
- int CV_WarpPerspectiveTest::prepare_test_case( int test_case_idx )
- {
- RNG& rng = ts->get_rng();
- int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
- const CvMat src = cvMat(test_mat[INPUT][0]);
- const CvMat dst = cvMat(test_mat[INPUT_OUTPUT][0]);
- Mat& mat = test_mat[INPUT][1];
- Point2f s[4], d[4];
- int i;
- if( code <= 0 )
- return code;
- s[0] = Point2f(0,0);
- d[0] = Point2f(0,0);
- s[1] = Point2f(src.cols-1.f,0);
- d[1] = Point2f(dst.cols-1.f,0);
- s[2] = Point2f(src.cols-1.f,src.rows-1.f);
- d[2] = Point2f(dst.cols-1.f,dst.rows-1.f);
- s[3] = Point2f(0,src.rows-1.f);
- d[3] = Point2f(0,dst.rows-1.f);
- float bufer[16];
- Mat tmp( 1, 16, CV_32FC1, bufer );
- rng.fill( tmp, CV_RAND_NORMAL, Scalar::all(0.), Scalar::all(0.1) );
- for( i = 0; i < 4; i++ )
- {
- s[i].x += bufer[i*4]*src.cols/2;
- s[i].y += bufer[i*4+1]*src.rows/2;
- d[i].x += bufer[i*4+2]*dst.cols/2;
- d[i].y += bufer[i*4+3]*dst.rows/2;
- }
- cv::getPerspectiveTransform( s, d ).convertTo( mat, mat.depth() );
- return code;
- }
- void CV_WarpPerspectiveTest::prepare_to_validation( int /*test_case_idx*/ )
- {
- Mat& src = test_mat[INPUT][0];
- Mat& dst = test_mat[REF_INPUT_OUTPUT][0];
- Mat& dst0 = test_mat[INPUT_OUTPUT][0];
- Mat mapx(dst.size(), CV_32F), mapy(dst.size(), CV_32F);
- double m[9];
- Mat srcM, dstM(3, 3, CV_64F, m);
- //cvInvert( &tM, &M, CV_LU );
- // [R|t] -> [R^-1 | -(R^-1)*t]
- test_mat[INPUT][1].convertTo( srcM, CV_64F );
- cv::invert(srcM, dstM, CV_SVD);
- for( int y = 0; y < dst.rows; y++ )
- {
- for( int x = 0; x < dst.cols; x++ )
- {
- double xs = x*m[0] + y*m[1] + m[2];
- double ys = x*m[3] + y*m[4] + m[5];
- double ds = x*m[6] + y*m[7] + m[8];
- ds = ds ? 1./ds : 0;
- xs *= ds;
- ys *= ds;
- mapx.at<float>(y, x) = (float)xs;
- mapy.at<float>(y, x) = (float)ys;
- }
- }
- Mat mask( dst.size(), CV_8U );
- test_remap( src, dst, mapx, mapy, &mask );
- dst.setTo(Scalar::all(0), mask);
- dst0.setTo(Scalar::all(0), mask);
- }
- /////////////////////////
- class CV_RemapTest : public CV_ImgWarpBaseTest
- {
- public:
- CV_RemapTest();
- protected:
- void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
- void run_func();
- int prepare_test_case( int test_case_idx );
- void prepare_to_validation( int /*test_case_idx*/ );
- double get_success_error_level( int test_case_idx, int i, int j );
- void fill_array( int test_case_idx, int i, int j, Mat& arr );
- };
- CV_RemapTest::CV_RemapTest() : CV_ImgWarpBaseTest( false )
- {
- //spatial_scale_zoom = spatial_scale_decimate;
- test_array[INPUT].push_back(NULL);
- test_array[INPUT].push_back(NULL);
- spatial_scale_decimate = spatial_scale_zoom;
- }
- void CV_RemapTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
- {
- CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
- types[INPUT][1] = types[INPUT][2] = CV_32FC1;
- interpolation = CV_INTER_LINEAR;
- }
- void CV_RemapTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
- {
- if( i != INPUT )
- CV_ImgWarpBaseTest::fill_array( test_case_idx, i, j, arr );
- }
- void CV_RemapTest::run_func()
- {
- cvRemap( test_array[INPUT][0], test_array[INPUT_OUTPUT][0],
- test_array[INPUT][1], test_array[INPUT][2], interpolation );
- }
- double CV_RemapTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
- {
- int depth = test_mat[INPUT][0].depth();
- return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 5e-2;
- }
- int CV_RemapTest::prepare_test_case( int test_case_idx )
- {
- RNG& rng = ts->get_rng();
- int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
- const Mat& src = test_mat[INPUT][0];
- double a[9] = {0,0,0,0,0,0,0,0,1}, k[4];
- Mat _a( 3, 3, CV_64F, a );
- Mat _k( 4, 1, CV_64F, k );
- double sz = MAX(src.rows, src.cols);
- if( code <= 0 )
- return code;
- double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7;
- a[2] = (src.cols - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
- a[5] = (src.rows - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
- a[0] = sz/(0.9 - cvtest::randReal(rng)*0.6);
- a[4] = aspect_ratio*a[0];
- k[0] = cvtest::randReal(rng)*0.06 - 0.03;
- k[1] = cvtest::randReal(rng)*0.06 - 0.03;
- if( k[0]*k[1] > 0 )
- k[1] = -k[1];
- k[2] = cvtest::randReal(rng)*0.004 - 0.002;
- k[3] = cvtest::randReal(rng)*0.004 - 0.002;
- cvtest::initUndistortMap( _a, _k, Mat(), Mat(), test_mat[INPUT][1].size(), test_mat[INPUT][1], test_mat[INPUT][2], CV_32F );
- return code;
- }
- void CV_RemapTest::prepare_to_validation( int /*test_case_idx*/ )
- {
- Mat& dst = test_mat[REF_INPUT_OUTPUT][0];
- Mat& dst0 = test_mat[INPUT_OUTPUT][0];
- Mat mask( dst.size(), CV_8U );
- test_remap(test_mat[INPUT][0], dst, test_mat[INPUT][1],
- test_mat[INPUT][2], &mask, interpolation );
- dst.setTo(Scalar::all(0), mask);
- dst0.setTo(Scalar::all(0), mask);
- }
- ////////////////////////////// GetRectSubPix /////////////////////////////////
- static void
- test_getQuadrangeSubPix( const Mat& src, Mat& dst, double* a )
- {
- int sstep = (int)(src.step / sizeof(float));
- int scols = src.cols, srows = src.rows;
- CV_Assert( src.depth() == CV_32F && src.type() == dst.type() );
- int cn = dst.channels();
- for( int y = 0; y < dst.rows; y++ )
- for( int x = 0; x < dst.cols; x++ )
- {
- float* d = dst.ptr<float>(y) + x*cn;
- float sx = (float)(a[0]*x + a[1]*y + a[2]);
- float sy = (float)(a[3]*x + a[4]*y + a[5]);
- int ix = cvFloor(sx), iy = cvFloor(sy);
- int dx = cn, dy = sstep;
- const float* s;
- sx -= ix; sy -= iy;
- if( (unsigned)ix >= (unsigned)(scols-1) )
- ix = ix < 0 ? 0 : scols - 1, sx = 0, dx = 0;
- if( (unsigned)iy >= (unsigned)(srows-1) )
- iy = iy < 0 ? 0 : srows - 1, sy = 0, dy = 0;
- s = src.ptr<float>(iy) + ix*cn;
- for( int k = 0; k < cn; k++, s++ )
- {
- float t0 = s[0] + sx*(s[dx] - s[0]);
- float t1 = s[dy] + sx*(s[dy + dx] - s[dy]);
- d[k] = t0 + sy*(t1 - t0);
- }
- }
- }
- class CV_GetRectSubPixTest : public CV_ImgWarpBaseTest
- {
- public:
- CV_GetRectSubPixTest();
- protected:
- void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
- void run_func();
- int prepare_test_case( int test_case_idx );
- void prepare_to_validation( int /*test_case_idx*/ );
- double get_success_error_level( int test_case_idx, int i, int j );
- void fill_array( int test_case_idx, int i, int j, Mat& arr );
- CvPoint2D32f center;
- bool test_cpp;
- };
- CV_GetRectSubPixTest::CV_GetRectSubPixTest() : CV_ImgWarpBaseTest( false )
- {
- //spatial_scale_zoom = spatial_scale_decimate;
- spatial_scale_decimate = spatial_scale_zoom;
- test_cpp = false;
- }
- void CV_GetRectSubPixTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
- {
- RNG& rng = ts->get_rng();
- CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
- int src_depth = cvtest::randInt(rng) % 2, dst_depth;
- int cn = cvtest::randInt(rng) % 2 ? 3 : 1;
- Size src_size, dst_size;
- dst_depth = src_depth = src_depth == 0 ? CV_8U : CV_32F;
- if( src_depth < CV_32F && cvtest::randInt(rng) % 2 )
- dst_depth = CV_32F;
- types[INPUT][0] = CV_MAKETYPE(src_depth,cn);
- types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(dst_depth,cn);
- src_size = sizes[INPUT][0];
- dst_size.width = cvRound(sqrt(cvtest::randReal(rng)*src_size.width) + 1);
- dst_size.height = cvRound(sqrt(cvtest::randReal(rng)*src_size.height) + 1);
- dst_size.width = MIN(dst_size.width,src_size.width);
- dst_size.height = MIN(dst_size.width,src_size.height);
- sizes[INPUT_OUTPUT][0] = sizes[REF_INPUT_OUTPUT][0] = dst_size;
- center.x = (float)(cvtest::randReal(rng)*src_size.width);
- center.y = (float)(cvtest::randReal(rng)*src_size.height);
- interpolation = CV_INTER_LINEAR;
- test_cpp = (cvtest::randInt(rng) & 256) == 0;
- }
- void CV_GetRectSubPixTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
- {
- if( i != INPUT )
- CV_ImgWarpBaseTest::fill_array( test_case_idx, i, j, arr );
- }
- void CV_GetRectSubPixTest::run_func()
- {
- if(!test_cpp)
- cvGetRectSubPix( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], center );
- else
- {
- cv::Mat _out = cv::cvarrToMat(test_array[INPUT_OUTPUT][0]);
- cv::getRectSubPix( cv::cvarrToMat(test_array[INPUT][0]), _out.size(), center, _out, _out.type());
- }
- }
- double CV_GetRectSubPixTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
- {
- int in_depth = test_mat[INPUT][0].depth();
- int out_depth = test_mat[INPUT_OUTPUT][0].depth();
- return in_depth >= CV_32F ? 1e-3 : out_depth >= CV_32F ? 1e-2 : 1;
- }
- int CV_GetRectSubPixTest::prepare_test_case( int test_case_idx )
- {
- return CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
- }
- void CV_GetRectSubPixTest::prepare_to_validation( int /*test_case_idx*/ )
- {
- Mat& src0 = test_mat[INPUT][0];
- Mat& dst0 = test_mat[REF_INPUT_OUTPUT][0];
- Mat src = src0, dst = dst0;
- int ftype = CV_MAKETYPE(CV_32F,src0.channels());
- double a[] = { 1, 0, center.x - dst.cols*0.5 + 0.5,
- 0, 1, center.y - dst.rows*0.5 + 0.5 };
- if( src.depth() != CV_32F )
- src0.convertTo(src, CV_32F);
- if( dst.depth() != CV_32F )
- dst.create(dst0.size(), ftype);
- test_getQuadrangeSubPix( src, dst, a );
- if( dst.data != dst0.data )
- dst.convertTo(dst0, dst0.depth());
- }
- class CV_GetQuadSubPixTest : public CV_ImgWarpBaseTest
- {
- public:
- CV_GetQuadSubPixTest();
- protected:
- void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
- void run_func();
- int prepare_test_case( int test_case_idx );
- void prepare_to_validation( int /*test_case_idx*/ );
- double get_success_error_level( int test_case_idx, int i, int j );
- };
- CV_GetQuadSubPixTest::CV_GetQuadSubPixTest() : CV_ImgWarpBaseTest( true )
- {
- //spatial_scale_zoom = spatial_scale_decimate;
- spatial_scale_decimate = spatial_scale_zoom;
- }
- void CV_GetQuadSubPixTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
- {
- int min_size = 4;
- CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
- Size sz = sizes[INPUT][0], dsz;
- RNG& rng = ts->get_rng();
- int msz, src_depth = cvtest::randInt(rng) % 2, dst_depth;
- int cn = cvtest::randInt(rng) % 2 ? 3 : 1;
- dst_depth = src_depth = src_depth == 0 ? CV_8U : CV_32F;
- if( src_depth < CV_32F && cvtest::randInt(rng) % 2 )
- dst_depth = CV_32F;
- types[INPUT][0] = CV_MAKETYPE(src_depth,cn);
- types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(dst_depth,cn);
- sz.width = MAX(sz.width,min_size);
- sz.height = MAX(sz.height,min_size);
- sizes[INPUT][0] = sz;
- msz = MIN( sz.width, sz.height );
- dsz.width = cvRound(sqrt(cvtest::randReal(rng)*msz) + 1);
- dsz.height = cvRound(sqrt(cvtest::randReal(rng)*msz) + 1);
- dsz.width = MIN(dsz.width,msz);
- dsz.height = MIN(dsz.width,msz);
- dsz.width = MAX(dsz.width,min_size);
- dsz.height = MAX(dsz.height,min_size);
- sizes[INPUT_OUTPUT][0] = sizes[REF_INPUT_OUTPUT][0] = dsz;
- sizes[INPUT][1] = cvSize( 3, 2 );
- }
- void CV_GetQuadSubPixTest::run_func()
- {
- CvMat mtx = cvMat(test_mat[INPUT][1]);
- cvGetQuadrangleSubPix( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], &mtx );
- }
- double CV_GetQuadSubPixTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
- {
- int in_depth = test_mat[INPUT][0].depth();
- //int out_depth = test_mat[INPUT_OUTPUT][0].depth();
- return in_depth >= CV_32F ? 1e-2 : 4;
- }
- int CV_GetQuadSubPixTest::prepare_test_case( int test_case_idx )
- {
- RNG& rng = ts->get_rng();
- int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
- const Mat& src = test_mat[INPUT][0];
- Mat& mat = test_mat[INPUT][1];
- Point2f center;
- double scale, angle;
- if( code <= 0 )
- return code;
- double a[6];
- Mat A( 2, 3, CV_64FC1, a );
- center.x = (float)((cvtest::randReal(rng)*1.2 - 0.1)*src.cols);
- center.y = (float)((cvtest::randReal(rng)*1.2 - 0.1)*src.rows);
- angle = cvtest::randReal(rng)*360;
- scale = cvtest::randReal(rng)*0.2 + 0.9;
- // y = Ax + b -> x = A^-1(y - b) = A^-1*y - A^-1*b
- scale = 1./scale;
- angle = angle*(CV_PI/180.);
- a[0] = a[4] = cos(angle)*scale;
- a[1] = sin(angle)*scale;
- a[3] = -a[1];
- a[2] = center.x - a[0]*center.x - a[1]*center.y;
- a[5] = center.y - a[3]*center.x - a[4]*center.y;
- A.convertTo( mat, mat.depth() );
- return code;
- }
- void CV_GetQuadSubPixTest::prepare_to_validation( int /*test_case_idx*/ )
- {
- Mat& src0 = test_mat[INPUT][0];
- Mat& dst0 = test_mat[REF_INPUT_OUTPUT][0];
- Mat src = src0, dst = dst0;
- int ftype = CV_MAKETYPE(CV_32F,src0.channels());
- double a[6], dx = (dst0.cols - 1)*0.5, dy = (dst0.rows - 1)*0.5;
- Mat A( 2, 3, CV_64F, a );
- if( src.depth() != CV_32F )
- src0.convertTo(src, CV_32F);
- if( dst.depth() != CV_32F )
- dst.create(dst0.size(), ftype);
- test_mat[INPUT][1].convertTo( A, CV_64F );
- a[2] -= a[0]*dx + a[1]*dy;
- a[5] -= a[3]*dx + a[4]*dy;
- test_getQuadrangeSubPix( src, dst, a );
- if( dst.data != dst0.data )
- dst.convertTo(dst0, dst0.depth());
- }
- ////////////////////////////// resizeArea /////////////////////////////////
- template <typename T>
- static void check_resize_area(const Mat& expected, const Mat& actual, double tolerance = 1.0)
- {
- ASSERT_EQ(actual.type(), expected.type());
- ASSERT_EQ(actual.size(), expected.size());
- Mat diff;
- absdiff(actual, expected, diff);
- Mat one_channel_diff = diff; //.reshape(1);
- Size dsize = actual.size();
- bool next = true;
- for (int dy = 0; dy < dsize.height && next; ++dy)
- {
- const T* eD = expected.ptr<T>(dy);
- const T* aD = actual.ptr<T>(dy);
- for (int dx = 0; dx < dsize.width && next; ++dx)
- if (fabs(static_cast<double>(aD[dx] - eD[dx])) > tolerance)
- {
- cvtest::TS::ptr()->printf(cvtest::TS::SUMMARY, "Inf norm: %f\n", static_cast<float>(cvtest::norm(actual, expected, NORM_INF)));
- cvtest::TS::ptr()->printf(cvtest::TS::SUMMARY, "Error in : (%d, %d)\n", dx, dy);
- const int radius = 3;
- int rmin = MAX(dy - radius, 0), rmax = MIN(dy + radius, dsize.height);
- int cmin = MAX(dx - radius, 0), cmax = MIN(dx + radius, dsize.width);
- std::cout << "Abs diff:" << std::endl << diff << std::endl;
- std::cout << "actual result:\n" << actual(Range(rmin, rmax), Range(cmin, cmax)) << std::endl;
- std::cout << "expected result:\n" << expected(Range(rmin, rmax), Range(cmin, cmax)) << std::endl;
- next = false;
- }
- }
- ASSERT_EQ(0, cvtest::norm(one_channel_diff, cv::NORM_INF));
- }
- ///////////////////////////////////////////////////////////////////////////
- TEST(Imgproc_cvWarpAffine, regression)
- {
- IplImage* src = cvCreateImage(cvSize(100, 100), IPL_DEPTH_8U, 1);
- IplImage* dst = cvCreateImage(cvSize(100, 100), IPL_DEPTH_8U, 1);
- cvZero(src);
- float m[6];
- CvMat M = cvMat( 2, 3, CV_32F, m );
- int w = src->width;
- int h = src->height;
- cv2DRotationMatrix(cvPoint2D32f(w*0.5f, h*0.5f), 45.0, 1.0, &M);
- cvWarpAffine(src, dst, &M);
- cvReleaseImage(&src);
- cvReleaseImage(&dst);
- }
- TEST(Imgproc_fitLine_vector_3d, regression)
- {
- std::vector<Point3f> points_vector;
- Point3f p21(4,4,4);
- Point3f p22(8,8,8);
- points_vector.push_back(p21);
- points_vector.push_back(p22);
- std::vector<float> line;
- cv::fitLine(points_vector, line, CV_DIST_L2, 0 ,0 ,0);
- ASSERT_EQ(line.size(), (size_t)6);
- }
- TEST(Imgproc_fitLine_vector_2d, regression)
- {
- std::vector<Point2f> points_vector;
- Point2f p21(4,4);
- Point2f p22(8,8);
- Point2f p23(16,16);
- points_vector.push_back(p21);
- points_vector.push_back(p22);
- points_vector.push_back(p23);
- std::vector<float> line;
- cv::fitLine(points_vector, line, CV_DIST_L2, 0 ,0 ,0);
- ASSERT_EQ(line.size(), (size_t)4);
- }
- TEST(Imgproc_fitLine_Mat_2dC2, regression)
- {
- cv::Mat mat1 = Mat::zeros(3, 1, CV_32SC2);
- std::vector<float> line1;
- cv::fitLine(mat1, line1, CV_DIST_L2, 0 ,0 ,0);
- ASSERT_EQ(line1.size(), (size_t)4);
- }
- TEST(Imgproc_fitLine_Mat_2dC1, regression)
- {
- cv::Matx<int, 3, 2> mat2;
- std::vector<float> line2;
- cv::fitLine(mat2, line2, CV_DIST_L2, 0 ,0 ,0);
- ASSERT_EQ(line2.size(), (size_t)4);
- }
- TEST(Imgproc_fitLine_Mat_3dC3, regression)
- {
- cv::Mat mat1 = Mat::zeros(2, 1, CV_32SC3);
- std::vector<float> line1;
- cv::fitLine(mat1, line1, CV_DIST_L2, 0 ,0 ,0);
- ASSERT_EQ(line1.size(), (size_t)6);
- }
- TEST(Imgproc_fitLine_Mat_3dC1, regression)
- {
- cv::Mat mat2 = Mat::zeros(2, 3, CV_32SC1);
- std::vector<float> line2;
- cv::fitLine(mat2, line2, CV_DIST_L2, 0 ,0 ,0);
- ASSERT_EQ(line2.size(), (size_t)6);
- }
- TEST(Imgproc_resize_area, regression)
- {
- static ushort input_data[16 * 16] = {
- 90, 94, 80, 3, 231, 2, 186, 245, 188, 165, 10, 19, 201, 169, 8, 228,
- 86, 5, 203, 120, 136, 185, 24, 94, 81, 150, 163, 137, 88, 105, 132, 132,
- 236, 48, 250, 218, 19, 52, 54, 221, 159, 112, 45, 11, 152, 153, 112, 134,
- 78, 133, 136, 83, 65, 76, 82, 250, 9, 235, 148, 26, 236, 179, 200, 50,
- 99, 51, 103, 142, 201, 65, 176, 33, 49, 226, 177, 109, 46, 21, 67, 130,
- 54, 125, 107, 154, 145, 51, 199, 189, 161, 142, 231, 240, 139, 162, 240, 22,
- 231, 86, 79, 106, 92, 47, 146, 156, 36, 207, 71, 33, 2, 244, 221, 71,
- 44, 127, 71, 177, 75, 126, 68, 119, 200, 129, 191, 251, 6, 236, 247, 6,
- 133, 175, 56, 239, 147, 221, 243, 154, 242, 82, 106, 99, 77, 158, 60, 229,
- 2, 42, 24, 174, 27, 198, 14, 204, 246, 251, 141, 31, 114, 163, 29, 147,
- 121, 53, 74, 31, 147, 189, 42, 98, 202, 17, 228, 123, 209, 40, 77, 49,
- 112, 203, 30, 12, 205, 25, 19, 106, 145, 185, 163, 201, 237, 223, 247, 38,
- 33, 105, 243, 117, 92, 179, 204, 248, 160, 90, 73, 126, 2, 41, 213, 204,
- 6, 124, 195, 201, 230, 187, 210, 167, 48, 79, 123, 159, 145, 218, 105, 209,
- 240, 152, 136, 235, 235, 164, 157, 9, 152, 38, 27, 209, 120, 77, 238, 196,
- 240, 233, 10, 241, 90, 67, 12, 79, 0, 43, 58, 27, 83, 199, 190, 182};
- static ushort expected_data[5 * 5] = {
- 120, 100, 151, 101, 130,
- 106, 115, 141, 130, 127,
- 91, 136, 170, 114, 140,
- 104, 122, 131, 147, 133,
- 161, 163, 70, 107, 182
- };
- cv::Mat src(16, 16, CV_16UC1, input_data);
- cv::Mat expected(5, 5, CV_16UC1, expected_data);
- cv::Mat actual(expected.size(), expected.type());
- cv::resize(src, actual, cv::Size(), 0.3, 0.3, INTER_AREA);
- check_resize_area<ushort>(expected, actual, 1.0);
- }
- TEST(Imgproc_resize_area, regression_half_round)
- {
- static uchar input_data[32 * 32];
- for(int i = 0; i < 32 * 32; ++i)
- input_data[i] = (uchar)(i % 2 + 253 + i / (16 * 32));
- static uchar expected_data[16 * 16];
- for(int i = 0; i < 16 * 16; ++i)
- expected_data[i] = (uchar)(254 + i / (16 * 8));
- cv::Mat src(32, 32, CV_8UC1, input_data);
- cv::Mat expected(16, 16, CV_8UC1, expected_data);
- cv::Mat actual(expected.size(), expected.type());
- cv::resize(src, actual, cv::Size(), 0.5, 0.5, INTER_AREA);
- check_resize_area<uchar>(expected, actual, 0.5);
- }
- TEST(Imgproc_resize_area, regression_quarter_round)
- {
- static uchar input_data[32 * 32];
- for(int i = 0; i < 32 * 32; ++i)
- input_data[i] = (uchar)(i % 2 + 253 + i / (16 * 32));
- static uchar expected_data[8 * 8];
- for(int i = 0; i < 8 * 8; ++i)
- expected_data[i] = 254;
- cv::Mat src(32, 32, CV_8UC1, input_data);
- cv::Mat expected(8, 8, CV_8UC1, expected_data);
- cv::Mat actual(expected.size(), expected.type());
- cv::resize(src, actual, cv::Size(), 0.25, 0.25, INTER_AREA);
- check_resize_area<uchar>(expected, actual, 0.5);
- }
- //////////////////////////////////////////////////////////////////////////
- TEST(Imgproc_Resize, accuracy) { CV_ResizeTest test; test.safe_run(); }
- TEST(Imgproc_ResizeExact, accuracy) { CV_ResizeExactTest test; test.safe_run(); }
- TEST(Imgproc_WarpAffine, accuracy) { CV_WarpAffineTest test; test.safe_run(); }
- TEST(Imgproc_WarpPerspective, accuracy) { CV_WarpPerspectiveTest test; test.safe_run(); }
- TEST(Imgproc_Remap, accuracy) { CV_RemapTest test; test.safe_run(); }
- TEST(Imgproc_GetRectSubPix, accuracy) { CV_GetRectSubPixTest test; test.safe_run(); }
- TEST(Imgproc_GetQuadSubPix, accuracy) { CV_GetQuadSubPixTest test; test.safe_run(); }
- //////////////////////////////////////////////////////////////////////////
- template <typename T, typename WT>
- struct IntCast
- {
- T operator() (WT val) const
- {
- return cv::saturate_cast<T>(val >> 2);
- }
- };
- template <typename T, typename WT>
- struct FltCast
- {
- T operator() (WT val) const
- {
- return cv::saturate_cast<T>(val * 0.25);
- }
- };
- template <typename T, typename WT, int one, typename CastOp>
- void resizeArea(const cv::Mat & src, cv::Mat & dst)
- {
- int cn = src.channels();
- CastOp castOp;
- for (int y = 0; y < dst.rows; ++y)
- {
- const T * sptr0 = src.ptr<T>(y << 1);
- const T * sptr1 = src.ptr<T>((y << 1) + 1);
- T * dptr = dst.ptr<T>(y);
- for (int x = 0; x < dst.cols * cn; x += cn)
- {
- int x1 = x << 1;
- for (int c = 0; c < cn; ++c)
- {
- WT sum = WT(sptr0[x1 + c]) + WT(sptr0[x1 + c + cn]);
- sum += WT(sptr1[x1 + c]) + WT(sptr1[x1 + c + cn]) + (WT)(one);
- dptr[x + c] = castOp(sum);
- }
- }
- }
- }
- TEST(Resize, Area_half)
- {
- const int size = 1000;
- int types[] = { CV_8UC1, CV_8UC4,
- CV_16UC1, CV_16UC4,
- CV_16SC1, CV_16SC3, CV_16SC4,
- CV_32FC1, CV_32FC4 };
- cv::RNG rng(17);
- for (int i = 0, _size = sizeof(types) / sizeof(types[0]); i < _size; ++i)
- {
- int type = types[i], depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
- const float eps = depth <= CV_32S ? 0 : 7e-5f;
- SCOPED_TRACE(depth);
- SCOPED_TRACE(cn);
- cv::Mat src(size, size, type), dst_actual(size >> 1, size >> 1, type),
- dst_reference(size >> 1, size >> 1, type);
- rng.fill(src, cv::RNG::UNIFORM, -1000, 1000, true);
- if (depth == CV_8U)
- resizeArea<uchar, ushort, 2, IntCast<uchar, ushort> >(src, dst_reference);
- else if (depth == CV_16U)
- resizeArea<ushort, uint, 2, IntCast<ushort, uint> >(src, dst_reference);
- else if (depth == CV_16S)
- resizeArea<short, int, 2, IntCast<short, int> >(src, dst_reference);
- else if (depth == CV_32F)
- resizeArea<float, float, 0, FltCast<float, float> >(src, dst_reference);
- else
- CV_Assert(0);
- cv::resize(src, dst_actual, dst_actual.size(), 0, 0, cv::INTER_AREA);
- ASSERT_GE(eps, cvtest::norm(dst_reference, dst_actual, cv::NORM_INF));
- }
- }
- TEST(Resize, lanczos4_regression_16192)
- {
- Size src_size(11, 17);
- Size dst_size(11, 153);
- Mat src(src_size, CV_8UC3, Scalar::all(128));
- Mat dst(dst_size, CV_8UC3, Scalar::all(255));
- cv::resize(src, dst, dst_size, 0, 0, INTER_LANCZOS4);
- Mat expected(dst_size, CV_8UC3, Scalar::all(128));
- EXPECT_EQ(cvtest::norm(dst, expected, NORM_INF), 0) << dst(Rect(0,0,8,8));
- }
- TEST(Resize, nearest_regression_15075)
- {
- const int C = 5;
- const int i1 = 5, j1 = 5;
- Size src_size(12, 12);
- Size dst_size(11, 11);
- cv::Mat src = cv::Mat::zeros(src_size, CV_8UC(C)), dst;
- for (int j = 0; j < C; j++)
- src.col(i1).row(j1).data[j] = 1;
- cv::resize(src, dst, dst_size, 0, 0, INTER_NEAREST);
- EXPECT_EQ(C, cvtest::norm(dst, NORM_L1)) << src.size;
- }
- TEST(Imgproc_Warp, multichannel)
- {
- static const int inter_types[] = {INTER_NEAREST, INTER_AREA, INTER_CUBIC,
- INTER_LANCZOS4, INTER_LINEAR};
- static const int inter_n = sizeof(inter_types) / sizeof(int);
- static const int border_types[] = {BORDER_CONSTANT, BORDER_DEFAULT,
- BORDER_REFLECT, BORDER_REPLICATE,
- BORDER_WRAP, BORDER_WRAP};
- static const int border_n = sizeof(border_types) / sizeof(int);
- RNG& rng = theRNG();
- for( int iter = 0; iter < 100; iter++ )
- {
- int inter = inter_types[rng.uniform(0, inter_n)];
- int border = border_types[rng.uniform(0, border_n)];
- int width = rng.uniform(3, 333);
- int height = rng.uniform(3, 333);
- int cn = rng.uniform(1, 15);
- if(inter == INTER_CUBIC || inter == INTER_LANCZOS4)
- cn = rng.uniform(1, 5);
- Mat src(height, width, CV_8UC(cn)), dst;
- //randu(src, 0, 256);
- src.setTo(0.);
- Mat rot = getRotationMatrix2D(Point2f(0.f, 0.f), 1.0, 1.0);
- warpAffine(src, dst, rot, src.size(), inter, border);
- ASSERT_EQ(0.0, cvtest::norm(dst, NORM_INF));
- Mat rot2 = Mat::eye(3, 3, rot.type());
- rot.copyTo(rot2.rowRange(0, 2));
- warpPerspective(src, dst, rot2, src.size(), inter, border);
- ASSERT_EQ(0.0, cvtest::norm(dst, NORM_INF));
- }
- }
- TEST(Imgproc_Warp, regression_19566) // valgrind should detect problem if any
- {
- const Size imgSize(8192, 8);
- Mat inMat = Mat::zeros(imgSize, CV_8UC4);
- Mat outMat = Mat::zeros(imgSize, CV_8UC4);
- warpAffine(
- inMat,
- outMat,
- getRotationMatrix2D(Point2f(imgSize.width / 2.0f, imgSize.height / 2.0f), 45.0, 1.0),
- imgSize,
- INTER_LINEAR,
- cv::BORDER_CONSTANT,
- cv::Scalar(0.0, 0.0, 0.0, 255.0)
- );
- }
- TEST(Imgproc_GetAffineTransform, singularity)
- {
- Point2f A_sample[3];
- A_sample[0] = Point2f(8.f, 9.f);
- A_sample[1] = Point2f(40.f, 41.f);
- A_sample[2] = Point2f(47.f, 48.f);
- Point2f B_sample[3];
- B_sample[0] = Point2f(7.37465f, 11.8295f);
- B_sample[1] = Point2f(15.0113f, 12.8994f);
- B_sample[2] = Point2f(38.9943f, 9.56297f);
- Mat trans = getAffineTransform(A_sample, B_sample);
- ASSERT_EQ(0.0, cvtest::norm(trans, NORM_INF));
- }
- TEST(Imgproc_Remap, DISABLED_memleak)
- {
- Mat src;
- const int N = 400;
- src.create(N, N, CV_8U);
- randu(src, 0, 256);
- Mat map_x, map_y, dst;
- dst.create( src.size(), src.type() );
- map_x.create( src.size(), CV_32FC1 );
- map_y.create( src.size(), CV_32FC1 );
- randu(map_x, 0., N+0.);
- randu(map_y, 0., N+0.);
- for( int iter = 0; iter < 10000; iter++ )
- {
- if(iter % 100 == 0)
- {
- putchar('.');
- fflush(stdout);
- }
- remap(src, dst, map_x, map_y, CV_INTER_LINEAR);
- }
- }
- //** @deprecated */
- TEST(Imgproc_linearPolar, identity)
- {
- const int N = 33;
- Mat in(N, N, CV_8UC3, Scalar(255, 0, 0));
- in(cv::Rect(N/3, N/3, N/3, N/3)).setTo(Scalar::all(255));
- cv::blur(in, in, Size(5, 5));
- cv::blur(in, in, Size(5, 5));
- Mat src = in.clone();
- Mat dst;
- Rect roi = Rect(0, 0, in.cols - ((N+19)/20), in.rows);
- for (int i = 1; i <= 5; i++)
- {
- linearPolar(src, dst,
- Point2f((N-1) * 0.5f, (N-1) * 0.5f), N * 0.5f,
- CV_WARP_FILL_OUTLIERS | CV_INTER_LINEAR | CV_WARP_INVERSE_MAP);
- linearPolar(dst, src,
- Point2f((N-1) * 0.5f, (N-1) * 0.5f), N * 0.5f,
- CV_WARP_FILL_OUTLIERS | CV_INTER_LINEAR);
- double psnr = cvtest::PSNR(in(roi), src(roi));
- EXPECT_LE(25, psnr) << "iteration=" << i;
- }
- #if 0
- Mat all(N*2+2,N*2+2, src.type(), Scalar(0,0,255));
- in.copyTo(all(Rect(0,0,N,N)));
- src.copyTo(all(Rect(0,N+1,N,N)));
- src.copyTo(all(Rect(N+1,0,N,N)));
- dst.copyTo(all(Rect(N+1,N+1,N,N)));
- imwrite("linearPolar.png", all);
- imshow("input", in); imshow("result", dst); imshow("restore", src); imshow("all", all);
- cv::waitKey();
- #endif
- }
- //** @deprecated */
- TEST(Imgproc_logPolar, identity)
- {
- const int N = 33;
- Mat in(N, N, CV_8UC3, Scalar(255, 0, 0));
- in(cv::Rect(N/3, N/3, N/3, N/3)).setTo(Scalar::all(255));
- cv::blur(in, in, Size(5, 5));
- cv::blur(in, in, Size(5, 5));
- Mat src = in.clone();
- Mat dst;
- Rect roi = Rect(0, 0, in.cols - ((N+19)/20), in.rows);
- double M = N/log(N * 0.5f);
- for (int i = 1; i <= 5; i++)
- {
- logPolar(src, dst,
- Point2f((N-1) * 0.5f, (N-1) * 0.5f), M,
- CV_WARP_FILL_OUTLIERS | CV_INTER_LINEAR | CV_WARP_INVERSE_MAP);
- logPolar(dst, src,
- Point2f((N-1) * 0.5f, (N-1) * 0.5f), M,
- CV_WARP_FILL_OUTLIERS | CV_INTER_LINEAR);
- double psnr = cvtest::PSNR(in(roi), src(roi));
- EXPECT_LE(25, psnr) << "iteration=" << i;
- }
- #if 0
- Mat all(N*2+2,N*2+2, src.type(), Scalar(0,0,255));
- in.copyTo(all(Rect(0,0,N,N)));
- src.copyTo(all(Rect(0,N+1,N,N)));
- src.copyTo(all(Rect(N+1,0,N,N)));
- dst.copyTo(all(Rect(N+1,N+1,N,N)));
- imwrite("logPolar.png", all);
- imshow("input", in); imshow("result", dst); imshow("restore", src); imshow("all", all);
- cv::waitKey();
- #endif
- }
- TEST(Imgproc_warpPolar, identity)
- {
- const int N = 33;
- Mat in(N, N, CV_8UC3, Scalar(255, 0, 0));
- in(cv::Rect(N / 3, N / 3, N / 3, N / 3)).setTo(Scalar::all(255));
- cv::blur(in, in, Size(5, 5));
- cv::blur(in, in, Size(5, 5));
- Mat src = in.clone();
- Mat dst;
- Rect roi = Rect(0, 0, in.cols - ((N + 19) / 20), in.rows);
- Point2f center = Point2f((N - 1) * 0.5f, (N - 1) * 0.5f);
- double radius = N * 0.5;
- int flags = CV_WARP_FILL_OUTLIERS | CV_INTER_LINEAR;
- // test linearPolar
- for (int ki = 1; ki <= 5; ki++)
- {
- warpPolar(src, dst, src.size(), center, radius, flags + WARP_POLAR_LINEAR + CV_WARP_INVERSE_MAP);
- warpPolar(dst, src, src.size(), center, radius, flags + WARP_POLAR_LINEAR);
- double psnr = cv::PSNR(in(roi), src(roi));
- EXPECT_LE(25, psnr) << "iteration=" << ki;
- }
- // test logPolar
- src = in.clone();
- for (int ki = 1; ki <= 5; ki++)
- {
- warpPolar(src, dst, src.size(),center, radius, flags + WARP_POLAR_LOG + CV_WARP_INVERSE_MAP );
- warpPolar(dst, src, src.size(),center, radius, flags + WARP_POLAR_LOG);
- double psnr = cv::PSNR(in(roi), src(roi));
- EXPECT_LE(25, psnr) << "iteration=" << ki;
- }
- #if 0
- Mat all(N*2+2,N*2+2, src.type(), Scalar(0,0,255));
- in.copyTo(all(Rect(0,0,N,N)));
- src.copyTo(all(Rect(0,N+1,N,N)));
- src.copyTo(all(Rect(N+1,0,N,N)));
- dst.copyTo(all(Rect(N+1,N+1,N,N)));
- imwrite("linearPolar.png", all);
- imshow("input", in); imshow("result", dst); imshow("restore", src); imshow("all", all);
- cv::waitKey();
- #endif
- }
- }} // namespace
- /* End of file. */
|