123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Copyright (C) 2014, Itseez, Inc, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- #ifndef DEBUG_IMAGES
- #define DEBUG_IMAGES 0
- #endif
- //#define GENERATE_DATA // generate data in debug mode via CPU code path (without IPP / OpenCL and other accelerators)
- using namespace cv;
- using namespace std;
- static string getTestCaseName(const string& picture_name, double minDist, double edgeThreshold, double accumThreshold, int minRadius, int maxRadius)
- {
- string results_name = cv::format("circles_%s_%.0f_%.0f_%.0f_%d_%d",
- picture_name.c_str(), minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
- string temp(results_name);
- size_t pos = temp.find_first_of("\\/.");
- while (pos != string::npos) {
- temp.replace(pos, 1, "_");
- pos = temp.find_first_of("\\/.");
- }
- return temp;
- }
- #if DEBUG_IMAGES
- static void highlightCircles(const string& imagePath, const vector<Vec3f>& circles, const string& outputImagePath)
- {
- Mat imgDebug = imread(imagePath, IMREAD_COLOR);
- const Scalar yellow(0, 255, 255);
- for (vector<Vec3f>::const_iterator iter = circles.begin(); iter != circles.end(); ++iter)
- {
- const Vec3f& circle = *iter;
- float x = circle[0];
- float y = circle[1];
- float r = max(circle[2], 2.0f);
- cv::circle(imgDebug, Point(int(x), int(y)), int(r), yellow);
- }
- imwrite(outputImagePath, imgDebug);
- }
- #endif
- typedef tuple<string, double, double, double, int, int> Image_MinDist_EdgeThreshold_AccumThreshold_MinRadius_MaxRadius_t;
- class HoughCirclesTestFixture : public testing::TestWithParam<Image_MinDist_EdgeThreshold_AccumThreshold_MinRadius_MaxRadius_t>
- {
- string picture_name;
- double minDist;
- double edgeThreshold;
- double accumThreshold;
- int minRadius;
- int maxRadius;
- public:
- HoughCirclesTestFixture()
- {
- picture_name = get<0>(GetParam());
- minDist = get<1>(GetParam());
- edgeThreshold = get<2>(GetParam());
- accumThreshold = get<3>(GetParam());
- minRadius = get<4>(GetParam());
- maxRadius = get<5>(GetParam());
- }
- HoughCirclesTestFixture(const string& picture, double minD, double edge, double accum, int minR, int maxR) :
- picture_name(picture), minDist(minD), edgeThreshold(edge), accumThreshold(accum), minRadius(minR), maxRadius(maxR)
- {
- }
- template <typename CircleType>
- void run_test(const char* xml_name)
- {
- string test_case_name = getTestCaseName(picture_name, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
- string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
- Mat src = imread(filename, IMREAD_GRAYSCALE);
- EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
- GaussianBlur(src, src, Size(9, 9), 2, 2);
- vector<CircleType> circles;
- const double dp = 1.0;
- HoughCircles(src, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
- string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
- #if DEBUG_IMAGES
- highlightCircles(filename, circles, imgProc + test_case_name + ".png");
- #endif
- string xml = imgProc + xml_name;
- #ifdef GENERATE_DATA
- {
- FileStorage fs(xml, FileStorage::READ);
- ASSERT_TRUE(!fs.isOpened() || fs[test_case_name].empty());
- }
- {
- FileStorage fs(xml, FileStorage::APPEND);
- EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
- fs << test_case_name << circles;
- }
- #else
- FileStorage fs(xml, FileStorage::READ);
- FileNode node = fs[test_case_name];
- ASSERT_FALSE(node.empty()) << "Missing test data: " << test_case_name << std::endl << "XML: " << xml;
- vector<CircleType> exp_circles;
- read(fs[test_case_name], exp_circles, vector<CircleType>());
- fs.release();
- EXPECT_EQ(exp_circles.size(), circles.size());
- #endif
- }
- };
- TEST_P(HoughCirclesTestFixture, regression)
- {
- run_test<Vec3f>("HoughCircles.xml");
- }
- TEST_P(HoughCirclesTestFixture, regression4f)
- {
- run_test<Vec4f>("HoughCircles4f.xml");
- }
- INSTANTIATE_TEST_CASE_P(ImgProc, HoughCirclesTestFixture, testing::Combine(
- // picture_name:
- testing::Values("imgproc/stuff.jpg"),
- // minDist:
- testing::Values(20),
- // edgeThreshold:
- testing::Values(20),
- // accumThreshold:
- testing::Values(30),
- // minRadius:
- testing::Values(20),
- // maxRadius:
- testing::Values(200)
- ));
- class HoughCirclesTest : public testing::TestWithParam<HoughModes>
- {
- protected:
- HoughModes method;
- public:
- HoughCirclesTest() { method = GetParam(); }
- };
- TEST_P(HoughCirclesTest, DefaultMaxRadius)
- {
- string picture_name = "imgproc/stuff.jpg";
- string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
- Mat src = imread(filename, IMREAD_GRAYSCALE);
- EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
- GaussianBlur(src, src, Size(9, 9), 2, 2);
- double dp = 1.0;
- double minDist = 20.0;
- double edgeThreshold = 20.0;
- double param2 = method == HOUGH_GRADIENT_ALT ? 0.9 : 30.;
- int minRadius = method == HOUGH_GRADIENT_ALT ? 10 : 20;
- int maxRadius = 0;
- vector<Vec3f> circles;
- vector<Vec4f> circles4f;
- HoughCircles(src, circles, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
- HoughCircles(src, circles4f, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
- #if DEBUG_IMAGES
- string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
- highlightCircles(filename, circles, imgProc + "HoughCirclesTest_DefaultMaxRadius.png");
- #endif
- int maxDimension = std::max(src.rows, src.cols);
- if(method == HOUGH_GRADIENT_ALT)
- {
- EXPECT_EQ(circles.size(), size_t(3)) << "Should find 3 circles";
- }
- else
- {
- EXPECT_GT(circles.size(), size_t(0)) << "Should find at least some circles";
- }
- for (size_t i = 0; i < circles.size(); ++i)
- {
- EXPECT_GE(circles[i][2], minRadius) << "Radius should be >= minRadius";
- EXPECT_LE(circles[i][2], maxDimension) << "Radius should be <= max image dimension";
- }
- }
- TEST_P(HoughCirclesTest, CentersOnly)
- {
- string picture_name = "imgproc/stuff.jpg";
- string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
- Mat src = imread(filename, IMREAD_GRAYSCALE);
- EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
- GaussianBlur(src, src, Size(9, 9), 2, 2);
- double dp = 1.0;
- double minDist = 20.0;
- double edgeThreshold = 20.0;
- double param2 = method == HOUGH_GRADIENT_ALT ? 0.9 : 30.;
- int minRadius = method == HOUGH_GRADIENT_ALT ? 10 : 20;
- int maxRadius = -1;
- vector<Vec3f> circles;
- vector<Vec4f> circles4f;
- HoughCircles(src, circles, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
- HoughCircles(src, circles4f, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
- #if DEBUG_IMAGES
- string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
- highlightCircles(filename, circles, imgProc + "HoughCirclesTest_DefaultMaxRadius.png");
- #endif
- if(method == HOUGH_GRADIENT_ALT)
- {
- EXPECT_EQ(circles.size(), size_t(3)) << "Should find 3 circles";
- }
- else
- {
- EXPECT_GT(circles.size(), size_t(0)) << "Should find at least some circles";
- }
- for (size_t i = 0; i < circles.size(); ++i)
- {
- if( method == HOUGH_GRADIENT )
- {
- EXPECT_EQ(circles[i][2], 0.0f) << "Did not ask for radius";
- }
- EXPECT_EQ(circles[i][0], circles4f[i][0]);
- EXPECT_EQ(circles[i][1], circles4f[i][1]);
- EXPECT_EQ(circles[i][2], circles4f[i][2]);
- }
- }
- TEST_P(HoughCirclesTest, ManySmallCircles)
- {
- string picture_name = "imgproc/beads.jpg";
- string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
- Mat src = imread(filename, IMREAD_GRAYSCALE);
- EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
- const double dp = method == HOUGH_GRADIENT_ALT ? 1.5 : 1.0;
- double minDist = 10;
- double edgeThreshold = 90;
- double accumThreshold = 11;
- double minCos2 = 0.85;
- double param2 = method == HOUGH_GRADIENT_ALT ? minCos2 : accumThreshold;
- int minRadius = 7;
- int maxRadius = 18;
- int ncircles_min = method == HOUGH_GRADIENT_ALT ? 2000 : 3000;
- Mat src_smooth;
- if( method == HOUGH_GRADIENT_ALT )
- GaussianBlur(src, src_smooth, Size(7, 7), 1.5, 1.5);
- else
- src.copyTo(src_smooth);
- vector<Vec3f> circles;
- vector<Vec4f> circles4f;
- HoughCircles(src_smooth, circles, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
- HoughCircles(src_smooth, circles4f, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
- #if DEBUG_IMAGES
- string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
- string test_case_name = getTestCaseName(picture_name, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
- highlightCircles(filename, circles, imgProc + test_case_name + ".png");
- #endif
- EXPECT_GT(circles.size(), size_t(ncircles_min)) << "Should find a lot of circles";
- EXPECT_EQ(circles.size(), circles4f.size());
- }
- INSTANTIATE_TEST_CASE_P(HoughGradient, HoughCirclesTest, testing::Values(HOUGH_GRADIENT));
- INSTANTIATE_TEST_CASE_P(HoughGradientAlt, HoughCirclesTest, testing::Values(HOUGH_GRADIENT_ALT));
- }} // namespace
|