123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- class CV_GrabcutTest : public cvtest::BaseTest
- {
- public:
- CV_GrabcutTest();
- ~CV_GrabcutTest();
- protected:
- bool verify(const Mat& mask, const Mat& exp);
- void run(int);
- };
- CV_GrabcutTest::CV_GrabcutTest() {}
- CV_GrabcutTest::~CV_GrabcutTest() {}
- bool CV_GrabcutTest::verify(const Mat& mask, const Mat& exp)
- {
- const float maxDiffRatio = 0.005f;
- int expArea = countNonZero( exp );
- int nonIntersectArea = countNonZero( mask != exp );
- float curRatio = (float)nonIntersectArea / (float)expArea;
- ts->printf( cvtest::TS::LOG, "nonIntersectArea/expArea = %f\n", curRatio );
- return curRatio < maxDiffRatio;
- }
- void CV_GrabcutTest::run( int /* start_from */)
- {
- cvtest::DefaultRngAuto defRng;
- Mat img = imread(string(ts->get_data_path()) + "shared/airplane.png");
- Mat mask_prob = imread(string(ts->get_data_path()) + "grabcut/mask_prob.png", 0);
- Mat exp_mask1 = imread(string(ts->get_data_path()) + "grabcut/exp_mask1.png", 0);
- Mat exp_mask2 = imread(string(ts->get_data_path()) + "grabcut/exp_mask2.png", 0);
- if (img.empty() || (!mask_prob.empty() && img.size() != mask_prob.size()) ||
- (!exp_mask1.empty() && img.size() != exp_mask1.size()) ||
- (!exp_mask2.empty() && img.size() != exp_mask2.size()) )
- {
- ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
- return;
- }
- Rect rect(Point(24, 126), Point(483, 294));
- Mat exp_bgdModel, exp_fgdModel;
- Mat mask;
- Mat bgdModel, fgdModel;
- grabCut( img, mask, rect, bgdModel, fgdModel, 0, GC_INIT_WITH_RECT );
- bgdModel.copyTo(exp_bgdModel);
- fgdModel.copyTo(exp_fgdModel);
- grabCut( img, mask, rect, bgdModel, fgdModel, 2, GC_EVAL_FREEZE_MODEL );
- // Multiply images by 255 for more visuality of test data.
- if( mask_prob.empty() )
- {
- mask.copyTo( mask_prob );
- imwrite(string(ts->get_data_path()) + "grabcut/mask_prob.png", mask_prob);
- }
- if( exp_mask1.empty() )
- {
- exp_mask1 = (mask & 1) * 255;
- imwrite(string(ts->get_data_path()) + "grabcut/exp_mask1.png", exp_mask1);
- }
- if (!verify((mask & 1) * 255, exp_mask1))
- {
- ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
- return;
- }
- // The model should not be changed after calling with GC_EVAL_FREEZE_MODEL
- double sumBgdModel = cv::sum(cv::abs(bgdModel) - cv::abs(exp_bgdModel))[0];
- double sumFgdModel = cv::sum(cv::abs(fgdModel) - cv::abs(exp_fgdModel))[0];
- if (sumBgdModel >= 0.1 || sumFgdModel >= 0.1)
- {
- ts->printf(cvtest::TS::LOG, "sumBgdModel = %f, sumFgdModel = %f\n", sumBgdModel, sumFgdModel);
- ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
- return;
- }
- mask = mask_prob;
- bgdModel.release();
- fgdModel.release();
- rect = Rect();
- grabCut( img, mask, rect, bgdModel, fgdModel, 0, GC_INIT_WITH_MASK );
- grabCut( img, mask, rect, bgdModel, fgdModel, 1, GC_EVAL );
- if( exp_mask2.empty() )
- {
- exp_mask2 = (mask & 1) * 255;
- imwrite(string(ts->get_data_path()) + "grabcut/exp_mask2.png", exp_mask2);
- }
- if (!verify((mask & 1) * 255, exp_mask2))
- {
- ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
- return;
- }
- ts->set_failed_test_info(cvtest::TS::OK);
- }
- TEST(Imgproc_GrabCut, regression) { CV_GrabcutTest test; test.safe_run(); }
- TEST(Imgproc_GrabCut, repeatability)
- {
- cvtest::TS& ts = *cvtest::TS::ptr();
- Mat image_1 = imread(string(ts.get_data_path()) + "grabcut/image1652.ppm", IMREAD_COLOR);
- Mat mask_1 = imread(string(ts.get_data_path()) + "grabcut/mask1652.ppm", IMREAD_GRAYSCALE);
- Rect roi_1(0, 0, 150, 150);
- Mat image_2 = image_1.clone();
- Mat mask_2 = mask_1.clone();
- Rect roi_2 = roi_1;
- Mat image_3 = image_1.clone();
- Mat mask_3 = mask_1.clone();
- Rect roi_3 = roi_1;
- Mat bgdModel_1, fgdModel_1;
- Mat bgdModel_2, fgdModel_2;
- Mat bgdModel_3, fgdModel_3;
- theRNG().state = 12378213;
- grabCut(image_1, mask_1, roi_1, bgdModel_1, fgdModel_1, 1, GC_INIT_WITH_MASK);
- theRNG().state = 12378213;
- grabCut(image_2, mask_2, roi_2, bgdModel_2, fgdModel_2, 1, GC_INIT_WITH_MASK);
- theRNG().state = 12378213;
- grabCut(image_3, mask_3, roi_3, bgdModel_3, fgdModel_3, 1, GC_INIT_WITH_MASK);
- EXPECT_EQ(0, countNonZero(mask_1 != mask_2));
- EXPECT_EQ(0, countNonZero(mask_1 != mask_3));
- EXPECT_EQ(0, countNonZero(mask_2 != mask_3));
- }
- }} // namespace
|