123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // Intel License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of Intel Corporation may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- class CV_DisTransTest : public cvtest::ArrayTest
- {
- public:
- CV_DisTransTest();
- protected:
- void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
- double get_success_error_level( int test_case_idx, int i, int j );
- void run_func();
- void prepare_to_validation( int );
- void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
- int prepare_test_case( int test_case_idx );
- int mask_size;
- int dist_type;
- int fill_labels;
- float mask[3];
- };
- CV_DisTransTest::CV_DisTransTest()
- {
- test_array[INPUT].push_back(NULL);
- test_array[OUTPUT].push_back(NULL);
- test_array[OUTPUT].push_back(NULL);
- test_array[REF_OUTPUT].push_back(NULL);
- test_array[REF_OUTPUT].push_back(NULL);
- optional_mask = false;
- element_wise_relative_error = true;
- }
- void CV_DisTransTest::get_test_array_types_and_sizes( int test_case_idx,
- vector<vector<Size> >& sizes, vector<vector<int> >& types )
- {
- RNG& rng = ts->get_rng();
- cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
- types[INPUT][0] = CV_8UC1;
- types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_32FC1;
- types[OUTPUT][1] = types[REF_OUTPUT][1] = CV_32SC1;
- if( cvtest::randInt(rng) & 1 )
- {
- mask_size = 3;
- }
- else
- {
- mask_size = 5;
- }
- dist_type = cvtest::randInt(rng) % 3;
- dist_type = dist_type == 0 ? CV_DIST_C : dist_type == 1 ? CV_DIST_L1 : CV_DIST_L2;
- // for now, check only the "labeled" distance transform mode
- fill_labels = 0;
- if( !fill_labels )
- sizes[OUTPUT][1] = sizes[REF_OUTPUT][1] = cvSize(0,0);
- }
- double CV_DisTransTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
- {
- Size sz = test_mat[INPUT][0].size();
- return dist_type == CV_DIST_C || dist_type == CV_DIST_L1 ? 0 : 0.01*MAX(sz.width, sz.height);
- }
- void CV_DisTransTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
- {
- cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
- if( i == INPUT && CV_MAT_DEPTH(type) == CV_8U )
- {
- low = Scalar::all(0);
- high = Scalar::all(10);
- }
- }
- int CV_DisTransTest::prepare_test_case( int test_case_idx )
- {
- int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
- if( code > 0 )
- {
- // the function's response to an "all-nonzeros" image is not determined,
- // so put at least one zero point
- Mat& mat = test_mat[INPUT][0];
- RNG& rng = ts->get_rng();
- int i = cvtest::randInt(rng) % mat.rows;
- int j = cvtest::randInt(rng) % mat.cols;
- mat.at<uchar>(i,j) = 0;
- }
- return code;
- }
- void CV_DisTransTest::run_func()
- {
- cvDistTransform( test_array[INPUT][0], test_array[OUTPUT][0], dist_type, mask_size,
- dist_type == CV_DIST_USER ? mask : 0, test_array[OUTPUT][1] );
- }
- static void
- cvTsDistTransform( const CvMat* _src, CvMat* _dst, int dist_type,
- int mask_size, float* _mask, CvMat* /*_labels*/ )
- {
- int i, j, k;
- int width = _src->cols, height = _src->rows;
- const float init_val = 1e6;
- float mask[3];
- CvMat* temp;
- int ofs[16] = {0};
- float delta[16];
- int tstep, count;
- CV_Assert( mask_size == 3 || mask_size == 5 );
- if( dist_type == CV_DIST_USER )
- memcpy( mask, _mask, sizeof(mask) );
- else if( dist_type == CV_DIST_C )
- {
- mask_size = 3;
- mask[0] = mask[1] = 1.f;
- }
- else if( dist_type == CV_DIST_L1 )
- {
- mask_size = 3;
- mask[0] = 1.f;
- mask[1] = 2.f;
- }
- else if( mask_size == 3 )
- {
- mask[0] = 0.955f;
- mask[1] = 1.3693f;
- }
- else
- {
- mask[0] = 1.0f;
- mask[1] = 1.4f;
- mask[2] = 2.1969f;
- }
- temp = cvCreateMat( height + mask_size-1, width + mask_size-1, CV_32F );
- tstep = temp->step / sizeof(float);
- if( mask_size == 3 )
- {
- count = 4;
- ofs[0] = -1; delta[0] = mask[0];
- ofs[1] = -tstep-1; delta[1] = mask[1];
- ofs[2] = -tstep; delta[2] = mask[0];
- ofs[3] = -tstep+1; delta[3] = mask[1];
- }
- else
- {
- count = 8;
- ofs[0] = -1; delta[0] = mask[0];
- ofs[1] = -tstep-2; delta[1] = mask[2];
- ofs[2] = -tstep-1; delta[2] = mask[1];
- ofs[3] = -tstep; delta[3] = mask[0];
- ofs[4] = -tstep+1; delta[4] = mask[1];
- ofs[5] = -tstep+2; delta[5] = mask[2];
- ofs[6] = -tstep*2-1; delta[6] = mask[2];
- ofs[7] = -tstep*2+1; delta[7] = mask[2];
- }
- for( i = 0; i < mask_size/2; i++ )
- {
- float* t0 = (float*)(temp->data.ptr + i*temp->step);
- float* t1 = (float*)(temp->data.ptr + (temp->rows - i - 1)*temp->step);
- for( j = 0; j < width + mask_size - 1; j++ )
- t0[j] = t1[j] = init_val;
- }
- for( i = 0; i < height; i++ )
- {
- uchar* s = _src->data.ptr + i*_src->step;
- float* tmp = (float*)(temp->data.ptr + temp->step*(i + (mask_size/2))) + (mask_size/2);
- for( j = 0; j < mask_size/2; j++ )
- tmp[-j-1] = tmp[j + width] = init_val;
- for( j = 0; j < width; j++ )
- {
- if( s[j] == 0 )
- tmp[j] = 0;
- else
- {
- float min_dist = init_val;
- for( k = 0; k < count; k++ )
- {
- float t = tmp[j+ofs[k]] + delta[k];
- if( min_dist > t )
- min_dist = t;
- }
- tmp[j] = min_dist;
- }
- }
- }
- for( i = height - 1; i >= 0; i-- )
- {
- float* d = (float*)(_dst->data.ptr + i*_dst->step);
- float* tmp = (float*)(temp->data.ptr + temp->step*(i + (mask_size/2))) + (mask_size/2);
- for( j = width - 1; j >= 0; j-- )
- {
- float min_dist = tmp[j];
- if( min_dist > mask[0] )
- {
- for( k = 0; k < count; k++ )
- {
- float t = tmp[j-ofs[k]] + delta[k];
- if( min_dist > t )
- min_dist = t;
- }
- tmp[j] = min_dist;
- }
- d[j] = min_dist;
- }
- }
- cvReleaseMat( &temp );
- }
- void CV_DisTransTest::prepare_to_validation( int /*test_case_idx*/ )
- {
- CvMat _input = cvMat(test_mat[INPUT][0]), _output = cvMat(test_mat[REF_OUTPUT][0]);
- cvTsDistTransform( &_input, &_output, dist_type, mask_size, mask, 0 );
- }
- TEST(Imgproc_DistanceTransform, accuracy) { CV_DisTransTest test; test.safe_run(); }
- BIGDATA_TEST(Imgproc_DistanceTransform, large_image_12218)
- {
- const int lls_maxcnt = 79992000; // labels's maximum count
- const int lls_mincnt = 1; // labels's minimum count
- int i, j, nz;
- Mat src(8000, 20000, CV_8UC1), dst, labels;
- for( i = 0; i < src.rows; i++ )
- for( j = 0; j < src.cols; j++ )
- src.at<uchar>(i, j) = (j > (src.cols / 2)) ? 0 : 255;
- distanceTransform(src, dst, labels, cv::DIST_L2, cv::DIST_MASK_3, DIST_LABEL_PIXEL);
- double scale = (double)lls_mincnt / (double)lls_maxcnt;
- labels.convertTo(labels, CV_32SC1, scale);
- Size size = labels.size();
- nz = cv::countNonZero(labels);
- EXPECT_EQ(nz, (size.height*size.width / 2));
- }
- }} // namespace
|