123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test {
- namespace {
- class CV_ConnectedComponentsTest : public cvtest::BaseTest
- {
- public:
- CV_ConnectedComponentsTest();
- ~CV_ConnectedComponentsTest();
- protected:
- void run(int);
- };
- CV_ConnectedComponentsTest::CV_ConnectedComponentsTest() {}
- CV_ConnectedComponentsTest::~CV_ConnectedComponentsTest() {}
- // This function force a row major order for the labels
- void normalizeLabels(Mat1i& imgLabels, int iNumLabels) {
- vector<int> vecNewLabels(iNumLabels + 1, 0);
- int iMaxNewLabel = 0;
- for (int r = 0; r < imgLabels.rows; ++r) {
- for (int c = 0; c < imgLabels.cols; ++c) {
- int iCurLabel = imgLabels(r, c);
- if (iCurLabel > 0) {
- if (vecNewLabels[iCurLabel] == 0) {
- vecNewLabels[iCurLabel] = ++iMaxNewLabel;
- }
- imgLabels(r, c) = vecNewLabels[iCurLabel];
- }
- }
- }
- }
- void CV_ConnectedComponentsTest::run(int /* start_from */)
- {
- int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
- string exp_path = string(ts->get_data_path()) + "connectedcomponents/ccomp_exp.png";
- Mat exp = imread(exp_path, 0);
- Mat orig = imread(string(ts->get_data_path()) + "connectedcomponents/concentric_circles.png", 0);
- if (orig.empty())
- {
- ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
- return;
- }
- Mat bw = orig > 128;
- for (uint cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt)
- {
- Mat1i labelImage;
- int nLabels = connectedComponents(bw, labelImage, 8, CV_32S, ccltype[cclt]);
- normalizeLabels(labelImage, nLabels);
- // Validate test results
- for (int r = 0; r < labelImage.rows; ++r) {
- for (int c = 0; c < labelImage.cols; ++c) {
- int l = labelImage.at<int>(r, c);
- bool pass = l >= 0 && l <= nLabels;
- if (!pass) {
- ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
- return;
- }
- }
- }
- if (exp.empty() || orig.size() != exp.size())
- {
- imwrite(exp_path, labelImage);
- exp = labelImage;
- }
- if (0 != cvtest::norm(labelImage > 0, exp > 0, NORM_INF))
- {
- ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
- return;
- }
- if (nLabels != cvtest::norm(labelImage, NORM_INF) + 1)
- {
- ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
- return;
- }
- }
- ts->set_failed_test_info(cvtest::TS::OK);
- }
- TEST(Imgproc_ConnectedComponents, regression) { CV_ConnectedComponentsTest test; test.safe_run(); }
- TEST(Imgproc_ConnectedComponents, grana_buffer_overflow)
- {
- cv::Mat darkMask;
- darkMask.create(31, 87, CV_8U);
- darkMask = 0;
- cv::Mat labels;
- cv::Mat stats;
- cv::Mat centroids;
- int nbComponents = cv::connectedComponentsWithStats(darkMask, labels, stats, centroids, 8, CV_32S, cv::CCL_GRANA);
- EXPECT_EQ(1, nbComponents);
- }
- static cv::Mat createCrashMat(int numThreads) {
- const int h = numThreads * 4 * 2 + 8;
- const double nParallelStripes = std::max(1, std::min(h / 2, numThreads * 4));
- const int w = 4;
- const int nstripes = cvRound(nParallelStripes <= 0 ? h : MIN(MAX(nParallelStripes, 1.), h));
- const cv::Range stripeRange(0, nstripes);
- const cv::Range wholeRange(0, h);
- cv::Mat m(h, w, CV_8U);
- m = 0;
- // Look for a range that starts with odd value and ends with even value
- cv::Range bugRange;
- for (int s = stripeRange.start; s < stripeRange.end; s++) {
- cv::Range sr(s, s + 1);
- cv::Range r;
- r.start = (int)(wholeRange.start +
- ((uint64)sr.start * (wholeRange.end - wholeRange.start) + nstripes / 2) / nstripes);
- r.end = sr.end >= nstripes ?
- wholeRange.end :
- (int)(wholeRange.start +
- ((uint64)sr.end * (wholeRange.end - wholeRange.start) + nstripes / 2) / nstripes);
- if (r.start > 0 && r.start % 2 == 1 && r.end % 2 == 0 && r.end >= r.start + 2) {
- bugRange = r;
- break;
- }
- }
- if (bugRange.empty()) { // Could not create a buggy range
- return m;
- }
- // Fill in bug Range
- for (int x = 1; x < w; x++) {
- m.at<char>(bugRange.start - 1, x) = 1;
- }
- m.at<char>(bugRange.start + 0, 0) = 1;
- m.at<char>(bugRange.start + 0, 1) = 1;
- m.at<char>(bugRange.start + 0, 3) = 1;
- m.at<char>(bugRange.start + 1, 1) = 1;
- m.at<char>(bugRange.start + 2, 1) = 1;
- m.at<char>(bugRange.start + 2, 3) = 1;
- m.at<char>(bugRange.start + 3, 0) = 1;
- m.at<char>(bugRange.start + 3, 1) = 1;
- return m;
- }
- TEST(Imgproc_ConnectedComponents, parallel_wu_labels)
- {
- cv::Mat mat = createCrashMat(cv::getNumThreads());
- if (mat.empty()) {
- return;
- }
- const int nbPixels = cv::countNonZero(mat);
- cv::Mat labels;
- cv::Mat stats;
- cv::Mat centroids;
- int nb = 0;
- EXPECT_NO_THROW(nb = cv::connectedComponentsWithStats(mat, labels, stats, centroids, 8, CV_32S, cv::CCL_WU));
- int area = 0;
- for (int i = 1; i < nb; ++i) {
- area += stats.at<int32_t>(i, cv::CC_STAT_AREA);
- }
- EXPECT_EQ(nbPixels, area);
- }
- TEST(Imgproc_ConnectedComponents, missing_background_pixels)
- {
- cv::Mat m = Mat::ones(10, 10, CV_8U);
- cv::Mat labels;
- cv::Mat stats;
- cv::Mat centroids;
- EXPECT_NO_THROW(cv::connectedComponentsWithStats(m, labels, stats, centroids, 8, CV_32S, cv::CCL_WU));
- EXPECT_EQ(stats.at<int32_t>(0, cv::CC_STAT_WIDTH), 0);
- EXPECT_EQ(stats.at<int32_t>(0, cv::CC_STAT_HEIGHT), 0);
- EXPECT_EQ(stats.at<int32_t>(0, cv::CC_STAT_LEFT), -1);
- EXPECT_TRUE(std::isnan(centroids.at<double>(0, 0)));
- EXPECT_TRUE(std::isnan(centroids.at<double>(0, 1)));
- }
- TEST(Imgproc_ConnectedComponents, spaghetti_bbdt_sauf_stats)
- {
- cv::Mat1b img(16, 16);
- img << 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
- 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
- 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
- 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1,
- 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1,
- 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
- cv::Mat1i labels;
- cv::Mat1i stats;
- cv::Mat1d centroids;
- int ccltype[] = { cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
- for (uint cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
- EXPECT_NO_THROW(cv::connectedComponentsWithStats(img, labels, stats, centroids, 8, CV_32S, ccltype[cclt]));
- EXPECT_EQ(stats(0, cv::CC_STAT_LEFT), 0);
- EXPECT_EQ(stats(0, cv::CC_STAT_TOP), 0);
- EXPECT_EQ(stats(0, cv::CC_STAT_WIDTH), 16);
- EXPECT_EQ(stats(0, cv::CC_STAT_HEIGHT), 15);
- EXPECT_EQ(stats(0, cv::CC_STAT_AREA), 144);
- EXPECT_EQ(stats(1, cv::CC_STAT_LEFT), 1);
- EXPECT_EQ(stats(1, cv::CC_STAT_TOP), 1);
- EXPECT_EQ(stats(1, cv::CC_STAT_WIDTH), 3);
- EXPECT_EQ(stats(1, cv::CC_STAT_HEIGHT), 3);
- EXPECT_EQ(stats(1, cv::CC_STAT_AREA), 9);
- EXPECT_EQ(stats(2, cv::CC_STAT_LEFT), 1);
- EXPECT_EQ(stats(2, cv::CC_STAT_TOP), 1);
- EXPECT_EQ(stats(2, cv::CC_STAT_WIDTH), 8);
- EXPECT_EQ(stats(2, cv::CC_STAT_HEIGHT), 7);
- EXPECT_EQ(stats(2, cv::CC_STAT_AREA), 40);
- EXPECT_EQ(stats(3, cv::CC_STAT_LEFT), 10);
- EXPECT_EQ(stats(3, cv::CC_STAT_TOP), 2);
- EXPECT_EQ(stats(3, cv::CC_STAT_WIDTH), 5);
- EXPECT_EQ(stats(3, cv::CC_STAT_HEIGHT), 2);
- EXPECT_EQ(stats(3, cv::CC_STAT_AREA), 8);
- EXPECT_EQ(stats(4, cv::CC_STAT_LEFT), 11);
- EXPECT_EQ(stats(4, cv::CC_STAT_TOP), 5);
- EXPECT_EQ(stats(4, cv::CC_STAT_WIDTH), 3);
- EXPECT_EQ(stats(4, cv::CC_STAT_HEIGHT), 3);
- EXPECT_EQ(stats(4, cv::CC_STAT_AREA), 9);
- EXPECT_EQ(stats(5, cv::CC_STAT_LEFT), 2);
- EXPECT_EQ(stats(5, cv::CC_STAT_TOP), 9);
- EXPECT_EQ(stats(5, cv::CC_STAT_WIDTH), 1);
- EXPECT_EQ(stats(5, cv::CC_STAT_HEIGHT), 1);
- EXPECT_EQ(stats(5, cv::CC_STAT_AREA), 1);
- EXPECT_EQ(stats(6, cv::CC_STAT_LEFT), 12);
- EXPECT_EQ(stats(6, cv::CC_STAT_TOP), 9);
- EXPECT_EQ(stats(6, cv::CC_STAT_WIDTH), 1);
- EXPECT_EQ(stats(6, cv::CC_STAT_HEIGHT), 1);
- EXPECT_EQ(stats(6, cv::CC_STAT_AREA), 1);
- // Labels' order could be different!
- if (cclt == cv::CCL_WU || cclt == cv::CCL_SAUF) {
- // CCL_SAUF, CCL_WU
- EXPECT_EQ(stats(9, cv::CC_STAT_LEFT), 1);
- EXPECT_EQ(stats(9, cv::CC_STAT_TOP), 11);
- EXPECT_EQ(stats(9, cv::CC_STAT_WIDTH), 4);
- EXPECT_EQ(stats(9, cv::CC_STAT_HEIGHT), 2);
- EXPECT_EQ(stats(9, cv::CC_STAT_AREA), 8);
- EXPECT_EQ(stats(7, cv::CC_STAT_LEFT), 6);
- EXPECT_EQ(stats(7, cv::CC_STAT_TOP), 10);
- EXPECT_EQ(stats(7, cv::CC_STAT_WIDTH), 4);
- EXPECT_EQ(stats(7, cv::CC_STAT_HEIGHT), 2);
- EXPECT_EQ(stats(7, cv::CC_STAT_AREA), 8);
- EXPECT_EQ(stats(8, cv::CC_STAT_LEFT), 0);
- EXPECT_EQ(stats(8, cv::CC_STAT_TOP), 10);
- EXPECT_EQ(stats(8, cv::CC_STAT_WIDTH), 16);
- EXPECT_EQ(stats(8, cv::CC_STAT_HEIGHT), 6);
- EXPECT_EQ(stats(8, cv::CC_STAT_AREA), 21);
- }
- else {
- // CCL_BBDT, CCL_GRANA, CCL_SPAGHETTI, CCL_BOLELLI
- EXPECT_EQ(stats(7, cv::CC_STAT_LEFT), 1);
- EXPECT_EQ(stats(7, cv::CC_STAT_TOP), 11);
- EXPECT_EQ(stats(7, cv::CC_STAT_WIDTH), 4);
- EXPECT_EQ(stats(7, cv::CC_STAT_HEIGHT), 2);
- EXPECT_EQ(stats(7, cv::CC_STAT_AREA), 8);
- EXPECT_EQ(stats(8, cv::CC_STAT_LEFT), 6);
- EXPECT_EQ(stats(8, cv::CC_STAT_TOP), 10);
- EXPECT_EQ(stats(8, cv::CC_STAT_WIDTH), 4);
- EXPECT_EQ(stats(8, cv::CC_STAT_HEIGHT), 2);
- EXPECT_EQ(stats(8, cv::CC_STAT_AREA), 8);
- EXPECT_EQ(stats(9, cv::CC_STAT_LEFT), 0);
- EXPECT_EQ(stats(9, cv::CC_STAT_TOP), 10);
- EXPECT_EQ(stats(9, cv::CC_STAT_WIDTH), 16);
- EXPECT_EQ(stats(9, cv::CC_STAT_HEIGHT), 6);
- EXPECT_EQ(stats(9, cv::CC_STAT_AREA), 21);
- }
- EXPECT_EQ(stats(10, cv::CC_STAT_LEFT), 9);
- EXPECT_EQ(stats(10, cv::CC_STAT_TOP), 12);
- EXPECT_EQ(stats(10, cv::CC_STAT_WIDTH), 5);
- EXPECT_EQ(stats(10, cv::CC_STAT_HEIGHT), 2);
- EXPECT_EQ(stats(10, cv::CC_STAT_AREA), 7);
- }
- }
- TEST(Imgproc_ConnectedComponents, chessboard_even)
- {
- cv::Size size(16, 16);
- cv::Mat1b input(size);
- cv::Mat1i output_8c(size);
- cv::Mat1i output_4c(size);
- // Chessboard image with even number of rows and cols
- // Note that this is the maximum number of labels for 4-way connectivity
- {
- input <<
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
- output_8c <<
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
- output_4c <<
- 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0,
- 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16,
- 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0,
- 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32,
- 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0,
- 0, 41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48,
- 49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, 0,
- 0, 57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64,
- 65, 0, 66, 0, 67, 0, 68, 0, 69, 0, 70, 0, 71, 0, 72, 0,
- 0, 73, 0, 74, 0, 75, 0, 76, 0, 77, 0, 78, 0, 79, 0, 80,
- 81, 0, 82, 0, 83, 0, 84, 0, 85, 0, 86, 0, 87, 0, 88, 0,
- 0, 89, 0, 90, 0, 91, 0, 92, 0, 93, 0, 94, 0, 95, 0, 96,
- 97, 0, 98, 0, 99, 0, 100, 0, 101, 0, 102, 0, 103, 0, 104, 0,
- 0, 105, 0, 106, 0, 107, 0, 108, 0, 109, 0, 110, 0, 111, 0, 112,
- 113, 0, 114, 0, 115, 0, 116, 0, 117, 0, 118, 0, 119, 0, 120, 0,
- 0, 121, 0, 122, 0, 123, 0, 124, 0, 125, 0, 126, 0, 127, 0, 128;
- }
- int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
- cv::Mat1i labels;
- cv::Mat diff;
- int nLabels = 0;
- for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
- EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
- normalizeLabels(labels, nLabels);
- diff = labels != output_8c;
- EXPECT_EQ(cv::countNonZero(diff), 0);
- EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
- normalizeLabels(labels, nLabels);
- diff = labels != output_4c;
- EXPECT_EQ(cv::countNonZero(diff), 0);
- }
- }
- TEST(Imgproc_ConnectedComponents, chessboard_odd)
- {
- cv::Size size(15, 15);
- cv::Mat1b input(size);
- cv::Mat1i output_8c(size);
- cv::Mat1i output_4c(size);
- // Chessboard image with odd number of rows and cols
- // Note that this is the maximum number of labels for 4-way connectivity
- {
- input <<
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
- output_8c <<
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
- output_4c <<
- 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8,
- 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0,
- 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23,
- 0, 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0,
- 31, 0, 32, 0, 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38,
- 0, 39, 0, 40, 0, 41, 0, 42, 0, 43, 0, 44, 0, 45, 0,
- 46, 0, 47, 0, 48, 0, 49, 0, 50, 0, 51, 0, 52, 0, 53,
- 0, 54, 0, 55, 0, 56, 0, 57, 0, 58, 0, 59, 0, 60, 0,
- 61, 0, 62, 0, 63, 0, 64, 0, 65, 0, 66, 0, 67, 0, 68,
- 0, 69, 0, 70, 0, 71, 0, 72, 0, 73, 0, 74, 0, 75, 0,
- 76, 0, 77, 0, 78, 0, 79, 0, 80, 0, 81, 0, 82, 0, 83,
- 0, 84, 0, 85, 0, 86, 0, 87, 0, 88, 0, 89, 0, 90, 0,
- 91, 0, 92, 0, 93, 0, 94, 0, 95, 0, 96, 0, 97, 0, 98,
- 0, 99, 0, 100, 0, 101, 0, 102, 0, 103, 0, 104, 0, 105, 0,
- 106, 0, 107, 0, 108, 0, 109, 0, 110, 0, 111, 0, 112, 0, 113;
- }
- int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
- cv::Mat1i labels;
- cv::Mat diff;
- int nLabels = 0;
- for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
- EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
- normalizeLabels(labels, nLabels);
- diff = labels != output_8c;
- EXPECT_EQ(cv::countNonZero(diff), 0);
- EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
- normalizeLabels(labels, nLabels);
- diff = labels != output_4c;
- EXPECT_EQ(cv::countNonZero(diff), 0);
- }
- }
- TEST(Imgproc_ConnectedComponents, maxlabels_8conn_even)
- {
- cv::Size size(16, 16);
- cv::Mat1b input(size);
- cv::Mat1i output_8c(size);
- cv::Mat1i output_4c(size);
- {
- input <<
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
- output_8c <<
- 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
- output_4c <<
- 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
- }
- int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
- cv::Mat1i labels;
- cv::Mat diff;
- int nLabels = 0;
- for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
- EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
- normalizeLabels(labels, nLabels);
- diff = labels != output_8c;
- EXPECT_EQ(cv::countNonZero(diff), 0);
- EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
- normalizeLabels(labels, nLabels);
- diff = labels != output_4c;
- EXPECT_EQ(cv::countNonZero(diff), 0);
- }
- }
- TEST(Imgproc_ConnectedComponents, maxlabels_8conn_odd)
- {
- cv::Size size(15, 15);
- cv::Mat1b input(size);
- cv::Mat1i output_8c(size);
- cv::Mat1i output_4c(size);
- {
- input <<
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
- output_8c <<
- 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64;
- output_4c <<
- 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64;
- }
- int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
- cv::Mat1i labels;
- cv::Mat diff;
- int nLabels = 0;
- for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
- EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
- normalizeLabels(labels, nLabels);
- diff = labels != output_8c;
- EXPECT_EQ(cv::countNonZero(diff), 0);
- EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
- normalizeLabels(labels, nLabels);
- diff = labels != output_4c;
- EXPECT_EQ(cv::countNonZero(diff), 0);
- }
- }
- TEST(Imgproc_ConnectedComponents, single_row)
- {
- cv::Size size(1, 15);
- cv::Mat1b input(size);
- cv::Mat1i output_8c(size);
- cv::Mat1i output_4c(size);
- {
- input <<
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
- output_8c <<
- 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8;
- output_4c <<
- 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8;
- }
- int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
- cv::Mat1i labels;
- cv::Mat diff;
- int nLabels = 0;
- for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
- EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
- normalizeLabels(labels, nLabels);
- diff = labels != output_8c;
- EXPECT_EQ(cv::countNonZero(diff), 0);
- EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
- normalizeLabels(labels, nLabels);
- diff = labels != output_4c;
- EXPECT_EQ(cv::countNonZero(diff), 0);
- }
- }
- TEST(Imgproc_ConnectedComponents, single_column)
- {
- cv::Size size(15, 1);
- cv::Mat1b input(size);
- cv::Mat1i output_8c(size);
- cv::Mat1i output_4c(size);
- {
- input <<
- 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
- output_8c <<
- 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8;
- output_4c <<
- 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8;
- }
- int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
- cv::Mat1i labels;
- cv::Mat diff;
- int nLabels = 0;
- for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
- EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
- normalizeLabels(labels, nLabels);
- diff = labels != output_8c;
- EXPECT_EQ(cv::countNonZero(diff), 0);
- EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
- normalizeLabels(labels, nLabels);
- diff = labels != output_4c;
- EXPECT_EQ(cv::countNonZero(diff), 0);
- }
- }
- TEST(Imgproc_ConnectedComponents, 4conn_regression_21366)
- {
- Mat src = Mat::zeros(Size(10, 10), CV_8UC1);
- {
- Mat labels, stats, centroids;
- EXPECT_NO_THROW(cv::connectedComponentsWithStats(src, labels, stats, centroids, 4));
- }
- }
- }
- } // namespace
|