123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // Intel License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of Intel Corporation may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- class CV_CannyTest : public cvtest::ArrayTest
- {
- public:
- CV_CannyTest(bool custom_deriv = false);
- protected:
- void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
- double get_success_error_level( int test_case_idx, int i, int j );
- int prepare_test_case( int test_case_idx );
- void run_func();
- void prepare_to_validation( int );
- int validate_test_results( int /*test_case_idx*/ );
- int aperture_size;
- bool use_true_gradient;
- double threshold1, threshold2;
- bool test_cpp;
- bool test_custom_deriv;
- Mat img;
- };
- CV_CannyTest::CV_CannyTest(bool custom_deriv)
- {
- test_array[INPUT].push_back(NULL);
- test_array[OUTPUT].push_back(NULL);
- test_array[REF_OUTPUT].push_back(NULL);
- element_wise_relative_error = true;
- aperture_size = 0;
- use_true_gradient = false;
- threshold1 = threshold2 = 0;
- test_custom_deriv = custom_deriv;
- const char imgPath[] = "shared/fruits.png";
- img = cv::imread(cvtest::TS::ptr()->get_data_path() + imgPath, IMREAD_GRAYSCALE);
- }
- void CV_CannyTest::get_test_array_types_and_sizes( int test_case_idx,
- vector<vector<Size> >& sizes,
- vector<vector<int> >& types )
- {
- RNG& rng = ts->get_rng();
- double thresh_range;
- cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
- types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_8U;
- aperture_size = cvtest::randInt(rng) % 2 ? 5 : 3;
- thresh_range = aperture_size == 3 ? 300 : 1000;
- threshold1 = cvtest::randReal(rng)*thresh_range;
- threshold2 = cvtest::randReal(rng)*thresh_range*0.3;
- if( cvtest::randInt(rng) % 2 )
- CV_SWAP( threshold1, threshold2, thresh_range );
- use_true_gradient = cvtest::randInt(rng) % 2 != 0;
- test_cpp = (cvtest::randInt(rng) & 256) == 0;
- ts->printf(cvtest::TS::LOG, "Canny(size = %d x %d, aperture_size = %d, threshold1 = %g, threshold2 = %g, L2 = %s) test_cpp = %s (test case #%d)\n",
- sizes[0][0].width, sizes[0][0].height, aperture_size, threshold1, threshold2, use_true_gradient ? "TRUE" : "FALSE", test_cpp ? "TRUE" : "FALSE", test_case_idx);
- }
- int CV_CannyTest::prepare_test_case( int test_case_idx )
- {
- int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
- if( code > 0 )
- {
- RNG& rng = ts->get_rng();
- Mat& src = test_mat[INPUT][0];
- //GaussianBlur(src, src, Size(11, 11), 5, 5);
- if(src.cols > img.cols || src.rows > img.rows)
- resize(img, src, src.size(), 0, 0, INTER_LINEAR_EXACT);
- else
- img(
- Rect(
- cvtest::randInt(rng) % (img.cols-src.cols),
- cvtest::randInt(rng) % (img.rows-src.rows),
- src.cols,
- src.rows
- )
- ).copyTo(src);
- GaussianBlur(src, src, Size(5, 5), 0);
- }
- return code;
- }
- double CV_CannyTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
- {
- return 0;
- }
- void CV_CannyTest::run_func()
- {
- if (test_custom_deriv)
- {
- cv::Mat _out = cv::cvarrToMat(test_array[OUTPUT][0]);
- cv::Mat src = cv::cvarrToMat(test_array[INPUT][0]);
- cv::Mat dx, dy;
- int m = aperture_size;
- Point anchor(m/2, m/2);
- Mat dxkernel = cvtest::calcSobelKernel2D( 1, 0, m, 0 );
- Mat dykernel = cvtest::calcSobelKernel2D( 0, 1, m, 0 );
- cvtest::filter2D(src, dx, CV_16S, dxkernel, anchor, 0, BORDER_REPLICATE);
- cvtest::filter2D(src, dy, CV_16S, dykernel, anchor, 0, BORDER_REPLICATE);
- cv::Canny(dx, dy, _out, threshold1, threshold2, use_true_gradient);
- }
- else
- {
- cv::Mat _out = cv::cvarrToMat(test_array[OUTPUT][0]);
- cv::Canny(cv::cvarrToMat(test_array[INPUT][0]), _out, threshold1, threshold2,
- aperture_size + (use_true_gradient ? CV_CANNY_L2_GRADIENT : 0));
- }
- }
- static void
- cannyFollow( int x, int y, float lowThreshold, const Mat& mag, Mat& dst )
- {
- static const int ofs[][2] = {{1,0},{1,-1},{0,-1},{-1,-1},{-1,0},{-1,1},{0,1},{1,1}};
- int i;
- dst.at<uchar>(y, x) = (uchar)255;
- for( i = 0; i < 8; i++ )
- {
- int x1 = x + ofs[i][0];
- int y1 = y + ofs[i][1];
- if( (unsigned)x1 < (unsigned)mag.cols &&
- (unsigned)y1 < (unsigned)mag.rows &&
- mag.at<float>(y1, x1) > lowThreshold &&
- !dst.at<uchar>(y1, x1) )
- cannyFollow( x1, y1, lowThreshold, mag, dst );
- }
- }
- static void
- test_Canny( const Mat& src, Mat& dst,
- double threshold1, double threshold2,
- int aperture_size, bool use_true_gradient )
- {
- int m = aperture_size;
- Point anchor(m/2, m/2);
- const double tan_pi_8 = tan(CV_PI/8.);
- const double tan_3pi_8 = tan(CV_PI*3/8);
- float lowThreshold = (float)MIN(threshold1, threshold2);
- float highThreshold = (float)MAX(threshold1, threshold2);
- int x, y, width = src.cols, height = src.rows;
- Mat dxkernel = cvtest::calcSobelKernel2D( 1, 0, m, 0 );
- Mat dykernel = cvtest::calcSobelKernel2D( 0, 1, m, 0 );
- Mat dx, dy, mag(height, width, CV_32F);
- cvtest::filter2D(src, dx, CV_32S, dxkernel, anchor, 0, BORDER_REPLICATE);
- cvtest::filter2D(src, dy, CV_32S, dykernel, anchor, 0, BORDER_REPLICATE);
- // calc gradient magnitude
- for( y = 0; y < height; y++ )
- {
- for( x = 0; x < width; x++ )
- {
- int dxval = dx.at<int>(y, x), dyval = dy.at<int>(y, x);
- mag.at<float>(y, x) = use_true_gradient ?
- (float)sqrt((double)(dxval*dxval + dyval*dyval)) :
- (float)(fabs((double)dxval) + fabs((double)dyval));
- }
- }
- // calc gradient direction, do nonmaxima suppression
- for( y = 0; y < height; y++ )
- {
- for( x = 0; x < width; x++ )
- {
- float a = mag.at<float>(y, x), b = 0, c = 0;
- int y1 = 0, y2 = 0, x1 = 0, x2 = 0;
- if( a <= lowThreshold )
- continue;
- int dxval = dx.at<int>(y, x);
- int dyval = dy.at<int>(y, x);
- double tg = dxval ? (double)dyval/dxval : DBL_MAX*CV_SIGN(dyval);
- if( fabs(tg) < tan_pi_8 )
- {
- y1 = y2 = y; x1 = x + 1; x2 = x - 1;
- }
- else if( tan_pi_8 <= tg && tg <= tan_3pi_8 )
- {
- y1 = y + 1; y2 = y - 1; x1 = x + 1; x2 = x - 1;
- }
- else if( -tan_3pi_8 <= tg && tg <= -tan_pi_8 )
- {
- y1 = y - 1; y2 = y + 1; x1 = x + 1; x2 = x - 1;
- }
- else
- {
- CV_Assert( fabs(tg) > tan_3pi_8 );
- x1 = x2 = x; y1 = y + 1; y2 = y - 1;
- }
- if( (unsigned)y1 < (unsigned)height && (unsigned)x1 < (unsigned)width )
- b = (float)fabs(mag.at<float>(y1, x1));
- if( (unsigned)y2 < (unsigned)height && (unsigned)x2 < (unsigned)width )
- c = (float)fabs(mag.at<float>(y2, x2));
- if( (a > b || (a == b && ((x1 == x+1 && y1 == y) || (x1 == x && y1 == y+1)))) && a > c )
- ;
- else
- mag.at<float>(y, x) = -a;
- }
- }
- dst = Scalar::all(0);
- // hysteresis threshold
- for( y = 0; y < height; y++ )
- {
- for( x = 0; x < width; x++ )
- if( mag.at<float>(y, x) > highThreshold && !dst.at<uchar>(y, x) )
- cannyFollow( x, y, lowThreshold, mag, dst );
- }
- }
- void CV_CannyTest::prepare_to_validation( int )
- {
- Mat src = test_mat[INPUT][0], dst = test_mat[REF_OUTPUT][0];
- test_Canny( src, dst, threshold1, threshold2, aperture_size, use_true_gradient );
- }
- int CV_CannyTest::validate_test_results( int test_case_idx )
- {
- int code = cvtest::TS::OK, nz0;
- prepare_to_validation(test_case_idx);
- double err = cvtest::norm(test_mat[OUTPUT][0], test_mat[REF_OUTPUT][0], CV_L1);
- if( err == 0 )
- return code;
- if( err != cvRound(err) || cvRound(err)%255 != 0 )
- {
- ts->printf( cvtest::TS::LOG, "Some of the pixels, produced by Canny, are not 0's or 255's; the difference is %g\n", err );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- return code;
- }
- nz0 = cvRound(cvtest::norm(test_mat[REF_OUTPUT][0], CV_L1)/255);
- err = (err/255/MAX(nz0,100))*100;
- if( err > 1 )
- {
- ts->printf( cvtest::TS::LOG, "Too high percentage of non-matching edge pixels = %g%%\n", err);
- ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
- }
- return code;
- }
- TEST(Imgproc_Canny, accuracy) { CV_CannyTest test; test.safe_run(); }
- TEST(Imgproc_Canny, accuracy_deriv) { CV_CannyTest test(true); test.safe_run(); }
- /*
- * Comparing OpenVX based implementation with the main one
- */
- #ifndef IMPLEMENT_PARAM_CLASS
- #define IMPLEMENT_PARAM_CLASS(name, type) \
- class name \
- { \
- public: \
- name ( type arg = type ()) : val_(arg) {} \
- operator type () const {return val_;} \
- private: \
- type val_; \
- }; \
- inline void PrintTo( name param, std::ostream* os) \
- { \
- *os << #name << "(" << testing::PrintToString(static_cast< type >(param)) << ")"; \
- }
- #endif // IMPLEMENT_PARAM_CLASS
- IMPLEMENT_PARAM_CLASS(ImagePath, string)
- IMPLEMENT_PARAM_CLASS(ApertureSize, int)
- IMPLEMENT_PARAM_CLASS(L2gradient, bool)
- PARAM_TEST_CASE(CannyVX, ImagePath, ApertureSize, L2gradient)
- {
- string imgPath;
- int kSize;
- bool useL2;
- Mat src, dst;
- virtual void SetUp()
- {
- imgPath = GET_PARAM(0);
- kSize = GET_PARAM(1);
- useL2 = GET_PARAM(2);
- }
- void loadImage()
- {
- src = cv::imread(cvtest::TS::ptr()->get_data_path() + imgPath, IMREAD_GRAYSCALE);
- ASSERT_FALSE(src.empty()) << "can't load image: " << imgPath;
- }
- };
- TEST_P(CannyVX, Accuracy)
- {
- if(haveOpenVX())
- {
- loadImage();
- setUseOpenVX(false);
- Mat canny;
- cv::Canny(src, canny, 100, 150, 3);
- setUseOpenVX(true);
- Mat cannyVX;
- cv::Canny(src, cannyVX, 100, 150, 3);
- // 'smart' diff check (excluding isolated pixels)
- Mat diff, diff1;
- absdiff(canny, cannyVX, diff);
- boxFilter(diff, diff1, -1, Size(3,3));
- const int minPixelsAroud = 3; // empirical number
- diff1 = diff1 > 255/9 * minPixelsAroud;
- erode(diff1, diff1, Mat());
- double error = cv::norm(diff1, NORM_L1) / 255;
- const int maxError = std::min(10, diff.size().area()/100); // empirical number
- if(error > maxError)
- {
- string outPath =
- string("CannyVX-diff-") +
- imgPath + '-' +
- 'k' + char(kSize+'0') + '-' +
- (useL2 ? "l2" : "l1");
- std::replace(outPath.begin(), outPath.end(), '/', '_');
- std::replace(outPath.begin(), outPath.end(), '\\', '_');
- std::replace(outPath.begin(), outPath.end(), '.', '_');
- imwrite(outPath+".png", diff);
- }
- ASSERT_LE(error, maxError);
- }
- }
- INSTANTIATE_TEST_CASE_P(
- ImgProc, CannyVX,
- testing::Combine(
- testing::Values(
- string("shared/baboon.png"),
- string("shared/fruits.png"),
- string("shared/lena.png"),
- string("shared/pic1.png"),
- string("shared/pic3.png"),
- string("shared/pic5.png"),
- string("shared/pic6.png")
- ),
- testing::Values(ApertureSize(3), ApertureSize(5)),
- testing::Values(L2gradient(false), L2gradient(true))
- )
- );
- }} // namespace
- /* End of file. */
|