123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681 |
- #!/usr/bin/env python
- import numpy as np
- import cv2 as cv
- import os
- import sys
- import unittest
- from tests_common import NewOpenCVTests
- try:
- if sys.version_info[:2] < (3, 0):
- raise unittest.SkipTest('Python 2.x is not supported')
- # Plaidml is an optional backend
- pkgs = [
- ('ocl' , cv.gapi.core.ocl.kernels()),
- ('cpu' , cv.gapi.core.cpu.kernels()),
- ('fluid' , cv.gapi.core.fluid.kernels())
- # ('plaidml', cv.gapi.core.plaidml.kernels())
- ]
- @cv.gapi.op('custom.add', in_types=[cv.GMat, cv.GMat, int], out_types=[cv.GMat])
- class GAdd:
- """Calculates sum of two matrices."""
- @staticmethod
- def outMeta(desc1, desc2, depth):
- return desc1
- @cv.gapi.kernel(GAdd)
- class GAddImpl:
- """Implementation for GAdd operation."""
- @staticmethod
- def run(img1, img2, dtype):
- return cv.add(img1, img2)
- @cv.gapi.op('custom.split3', in_types=[cv.GMat], out_types=[cv.GMat, cv.GMat, cv.GMat])
- class GSplit3:
- """Divides a 3-channel matrix into 3 single-channel matrices."""
- @staticmethod
- def outMeta(desc):
- out_desc = desc.withType(desc.depth, 1)
- return out_desc, out_desc, out_desc
- @cv.gapi.kernel(GSplit3)
- class GSplit3Impl:
- """Implementation for GSplit3 operation."""
- @staticmethod
- def run(img):
- # NB: cv.split return list but g-api requires tuple in multiple output case
- return tuple(cv.split(img))
- @cv.gapi.op('custom.mean', in_types=[cv.GMat], out_types=[cv.GScalar])
- class GMean:
- """Calculates the mean value M of matrix elements."""
- @staticmethod
- def outMeta(desc):
- return cv.empty_scalar_desc()
- @cv.gapi.kernel(GMean)
- class GMeanImpl:
- """Implementation for GMean operation."""
- @staticmethod
- def run(img):
- # NB: cv.split return list but g-api requires tuple in multiple output case
- return cv.mean(img)
- @cv.gapi.op('custom.addC', in_types=[cv.GMat, cv.GScalar, int], out_types=[cv.GMat])
- class GAddC:
- """Adds a given scalar value to each element of given matrix."""
- @staticmethod
- def outMeta(mat_desc, scalar_desc, dtype):
- return mat_desc
- @cv.gapi.kernel(GAddC)
- class GAddCImpl:
- """Implementation for GAddC operation."""
- @staticmethod
- def run(img, sc, dtype):
- # NB: dtype is just ignored in this implementation.
- # Moreover from G-API kernel got scalar as tuples with 4 elements
- # where the last element is equal to zero, just cut him for broadcasting.
- return img + np.array(sc, dtype=np.uint8)[:-1]
- @cv.gapi.op('custom.size', in_types=[cv.GMat], out_types=[cv.GOpaque.Size])
- class GSize:
- """Gets dimensions from input matrix."""
- @staticmethod
- def outMeta(mat_desc):
- return cv.empty_gopaque_desc()
- @cv.gapi.kernel(GSize)
- class GSizeImpl:
- """Implementation for GSize operation."""
- @staticmethod
- def run(img):
- # NB: Take only H, W, because the operation should return cv::Size which is 2D.
- return img.shape[:2]
- @cv.gapi.op('custom.sizeR', in_types=[cv.GOpaque.Rect], out_types=[cv.GOpaque.Size])
- class GSizeR:
- """Gets dimensions from rectangle."""
- @staticmethod
- def outMeta(opaq_desc):
- return cv.empty_gopaque_desc()
- @cv.gapi.kernel(GSizeR)
- class GSizeRImpl:
- """Implementation for GSizeR operation."""
- @staticmethod
- def run(rect):
- # NB: rect - is tuple (x, y, h, w)
- return (rect[2], rect[3])
- @cv.gapi.op('custom.boundingRect', in_types=[cv.GArray.Point], out_types=[cv.GOpaque.Rect])
- class GBoundingRect:
- """Calculates minimal up-right bounding rectangle for the specified
- 9 point set or non-zero pixels of gray-scale image."""
- @staticmethod
- def outMeta(arr_desc):
- return cv.empty_gopaque_desc()
- @cv.gapi.kernel(GBoundingRect)
- class GBoundingRectImpl:
- """Implementation for GBoundingRect operation."""
- @staticmethod
- def run(array):
- # NB: OpenCV - numpy array (n_points x 2).
- # G-API - array of tuples (n_points).
- return cv.boundingRect(np.array(array))
- @cv.gapi.op('custom.goodFeaturesToTrack',
- in_types=[cv.GMat, int, float, float, int, bool, float],
- out_types=[cv.GArray.Point2f])
- class GGoodFeatures:
- """Finds the most prominent corners in the image
- or in the specified image region."""
- @staticmethod
- def outMeta(desc, max_corners, quality_lvl,
- min_distance, block_sz,
- use_harris_detector, k):
- return cv.empty_array_desc()
- @cv.gapi.kernel(GGoodFeatures)
- class GGoodFeaturesImpl:
- """Implementation for GGoodFeatures operation."""
- @staticmethod
- def run(img, max_corners, quality_lvl,
- min_distance, block_sz,
- use_harris_detector, k):
- features = cv.goodFeaturesToTrack(img, max_corners, quality_lvl,
- min_distance, mask=None,
- blockSize=block_sz,
- useHarrisDetector=use_harris_detector, k=k)
- # NB: The operation output is cv::GArray<cv::Pointf>, so it should be mapped
- # to python paramaters like this: [(1.2, 3.4), (5.2, 3.2)], because the cv::Point2f
- # according to opencv rules mapped to the tuple and cv::GArray<> mapped to the list.
- # OpenCV returns np.array with shape (n_features, 1, 2), so let's to convert it to list
- # tuples with size == n_features.
- features = list(map(tuple, features.reshape(features.shape[0], -1)))
- return features
- # To validate invalid cases
- def create_op(in_types, out_types):
- @cv.gapi.op('custom.op', in_types=in_types, out_types=out_types)
- class Op:
- """Custom operation for testing."""
- @staticmethod
- def outMeta(desc):
- raise NotImplementedError("outMeta isn't imlemented")
- return Op
- class gapi_sample_pipelines(NewOpenCVTests):
- def test_custom_op_add(self):
- sz = (3, 3)
- in_mat1 = np.full(sz, 45, dtype=np.uint8)
- in_mat2 = np.full(sz, 50, dtype=np.uint8)
- # OpenCV
- expected = cv.add(in_mat1, in_mat2)
- # G-API
- g_in1 = cv.GMat()
- g_in2 = cv.GMat()
- g_out = GAdd.on(g_in1, g_in2, cv.CV_8UC1)
- comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
- pkg = cv.gapi.kernels(GAddImpl)
- actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.gapi.compile_args(pkg))
- self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
- def test_custom_op_split3(self):
- sz = (4, 4)
- in_ch1 = np.full(sz, 1, dtype=np.uint8)
- in_ch2 = np.full(sz, 2, dtype=np.uint8)
- in_ch3 = np.full(sz, 3, dtype=np.uint8)
- # H x W x C
- in_mat = np.stack((in_ch1, in_ch2, in_ch3), axis=2)
- # G-API
- g_in = cv.GMat()
- g_ch1, g_ch2, g_ch3 = GSplit3.on(g_in)
- comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_ch1, g_ch2, g_ch3))
- pkg = cv.gapi.kernels(GSplit3Impl)
- ch1, ch2, ch3 = comp.apply(cv.gin(in_mat), args=cv.gapi.compile_args(pkg))
- self.assertEqual(0.0, cv.norm(in_ch1, ch1, cv.NORM_INF))
- self.assertEqual(0.0, cv.norm(in_ch2, ch2, cv.NORM_INF))
- self.assertEqual(0.0, cv.norm(in_ch3, ch3, cv.NORM_INF))
- def test_custom_op_mean(self):
- img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
- in_mat = cv.imread(img_path)
- # OpenCV
- expected = cv.mean(in_mat)
- # G-API
- g_in = cv.GMat()
- g_out = GMean.on(g_in)
- comp = cv.GComputation(g_in, g_out)
- pkg = cv.gapi.kernels(GMeanImpl)
- actual = comp.apply(cv.gin(in_mat), args=cv.gapi.compile_args(pkg))
- # Comparison
- self.assertEqual(expected, actual)
- def test_custom_op_addC(self):
- sz = (3, 3, 3)
- in_mat = np.full(sz, 45, dtype=np.uint8)
- sc = (50, 10, 20)
- # Numpy reference, make array from sc to keep uint8 dtype.
- expected = in_mat + np.array(sc, dtype=np.uint8)
- # G-API
- g_in = cv.GMat()
- g_sc = cv.GScalar()
- g_out = GAddC.on(g_in, g_sc, cv.CV_8UC1)
- comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(g_out))
- pkg = cv.gapi.kernels(GAddCImpl)
- actual = comp.apply(cv.gin(in_mat, sc), args=cv.gapi.compile_args(pkg))
- self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
- def test_custom_op_size(self):
- sz = (100, 150, 3)
- in_mat = np.full(sz, 45, dtype=np.uint8)
- # Open_cV
- expected = (100, 150)
- # G-API
- g_in = cv.GMat()
- g_sz = GSize.on(g_in)
- comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_sz))
- pkg = cv.gapi.kernels(GSizeImpl)
- actual = comp.apply(cv.gin(in_mat), args=cv.gapi.compile_args(pkg))
- self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
- def test_custom_op_sizeR(self):
- # x, y, h, w
- roi = (10, 15, 100, 150)
- expected = (100, 150)
- # G-API
- g_r = cv.GOpaque.Rect()
- g_sz = GSizeR.on(g_r)
- comp = cv.GComputation(cv.GIn(g_r), cv.GOut(g_sz))
- pkg = cv.gapi.kernels(GSizeRImpl)
- actual = comp.apply(cv.gin(roi), args=cv.gapi.compile_args(pkg))
- # cv.norm works with tuples ?
- self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
- def test_custom_op_boundingRect(self):
- points = [(0,0), (0,1), (1,0), (1,1)]
- # OpenCV
- expected = cv.boundingRect(np.array(points))
- # G-API
- g_pts = cv.GArray.Point()
- g_br = GBoundingRect.on(g_pts)
- comp = cv.GComputation(cv.GIn(g_pts), cv.GOut(g_br))
- pkg = cv.gapi.kernels(GBoundingRectImpl)
- actual = comp.apply(cv.gin(points), args=cv.gapi.compile_args(pkg))
- # cv.norm works with tuples ?
- self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
- def test_custom_op_goodFeaturesToTrack(self):
- # G-API
- img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
- in_mat = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
- # NB: goodFeaturesToTrack configuration
- max_corners = 50
- quality_lvl = 0.01
- min_distance = 10.0
- block_sz = 3
- use_harris_detector = True
- k = 0.04
- # OpenCV
- expected = cv.goodFeaturesToTrack(in_mat, max_corners, quality_lvl,
- min_distance, mask=None,
- blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
- # G-API
- g_in = cv.GMat()
- g_out = GGoodFeatures.on(g_in, max_corners, quality_lvl,
- min_distance, block_sz, use_harris_detector, k)
- comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
- pkg = cv.gapi.kernels(GGoodFeaturesImpl)
- actual = comp.apply(cv.gin(in_mat), args=cv.gapi.compile_args(pkg))
- # NB: OpenCV & G-API have different output types.
- # OpenCV - numpy array with shape (num_points, 1, 2)
- # G-API - list of tuples with size - num_points
- # Comparison
- self.assertEqual(0.0, cv.norm(expected.flatten(),
- np.array(actual, dtype=np.float32).flatten(), cv.NORM_INF))
- def test_invalid_op(self):
- # NB: Empty input types list
- with self.assertRaises(Exception): create_op(in_types=[], out_types=[cv.GMat])
- # NB: Empty output types list
- with self.assertRaises(Exception): create_op(in_types=[cv.GMat], out_types=[])
- # Invalid output types
- with self.assertRaises(Exception): create_op(in_types=[cv.GMat], out_types=[int])
- with self.assertRaises(Exception): create_op(in_types=[cv.GMat], out_types=[cv.GMat, int])
- with self.assertRaises(Exception): create_op(in_types=[cv.GMat], out_types=[str, cv.GScalar])
- def test_invalid_op_input(self):
- # NB: Check GMat/GScalar
- with self.assertRaises(Exception): create_op([cv.GMat] , [cv.GScalar]).on(cv.GScalar())
- with self.assertRaises(Exception): create_op([cv.GScalar], [cv.GScalar]).on(cv.GMat())
- # NB: Check GOpaque
- op = create_op([cv.GOpaque.Rect], [cv.GMat])
- with self.assertRaises(Exception): op.on(cv.GOpaque.Bool())
- with self.assertRaises(Exception): op.on(cv.GOpaque.Int())
- with self.assertRaises(Exception): op.on(cv.GOpaque.Double())
- with self.assertRaises(Exception): op.on(cv.GOpaque.Float())
- with self.assertRaises(Exception): op.on(cv.GOpaque.String())
- with self.assertRaises(Exception): op.on(cv.GOpaque.Point())
- with self.assertRaises(Exception): op.on(cv.GOpaque.Point2f())
- with self.assertRaises(Exception): op.on(cv.GOpaque.Size())
- # NB: Check GArray
- op = create_op([cv.GArray.Rect], [cv.GMat])
- with self.assertRaises(Exception): op.on(cv.GArray.Bool())
- with self.assertRaises(Exception): op.on(cv.GArray.Int())
- with self.assertRaises(Exception): op.on(cv.GArray.Double())
- with self.assertRaises(Exception): op.on(cv.GArray.Float())
- with self.assertRaises(Exception): op.on(cv.GArray.String())
- with self.assertRaises(Exception): op.on(cv.GArray.Point())
- with self.assertRaises(Exception): op.on(cv.GArray.Point2f())
- with self.assertRaises(Exception): op.on(cv.GArray.Size())
- # Check other possible invalid options
- with self.assertRaises(Exception): op.on(cv.GMat())
- with self.assertRaises(Exception): op.on(cv.GScalar())
- with self.assertRaises(Exception): op.on(1)
- with self.assertRaises(Exception): op.on('foo')
- with self.assertRaises(Exception): op.on(False)
- with self.assertRaises(Exception): create_op([cv.GMat, int], [cv.GMat]).on(cv.GMat(), 'foo')
- with self.assertRaises(Exception): create_op([cv.GMat, int], [cv.GMat]).on(cv.GMat())
- def test_stateful_kernel(self):
- @cv.gapi.op('custom.sum', in_types=[cv.GArray.Int], out_types=[cv.GOpaque.Int])
- class GSum:
- @staticmethod
- def outMeta(arr_desc):
- return cv.empty_gopaque_desc()
- @cv.gapi.kernel(GSum)
- class GSumImpl:
- last_result = 0
- @staticmethod
- def run(arr):
- GSumImpl.last_result = sum(arr)
- return GSumImpl.last_result
- g_in = cv.GArray.Int()
- comp = cv.GComputation(cv.GIn(g_in), cv.GOut(GSum.on(g_in)))
- s = comp.apply(cv.gin([1, 2, 3, 4]), args=cv.gapi.compile_args(cv.gapi.kernels(GSumImpl)))
- self.assertEqual(10, s)
- s = comp.apply(cv.gin([1, 2, 8, 7]), args=cv.gapi.compile_args(cv.gapi.kernels(GSumImpl)))
- self.assertEqual(18, s)
- self.assertEqual(18, GSumImpl.last_result)
- def test_opaq_with_custom_type(self):
- @cv.gapi.op('custom.op', in_types=[cv.GOpaque.Any, cv.GOpaque.String], out_types=[cv.GOpaque.Any])
- class GLookUp:
- @staticmethod
- def outMeta(opaq_desc0, opaq_desc1):
- return cv.empty_gopaque_desc()
- @cv.gapi.kernel(GLookUp)
- class GLookUpImpl:
- @staticmethod
- def run(table, key):
- return table[key]
- g_table = cv.GOpaque.Any()
- g_key = cv.GOpaque.String()
- g_out = GLookUp.on(g_table, g_key)
- comp = cv.GComputation(cv.GIn(g_table, g_key), cv.GOut(g_out))
- table = {
- 'int': 42,
- 'str': 'hello, world!',
- 'tuple': (42, 42)
- }
- out = comp.apply(cv.gin(table, 'int'), args=cv.gapi.compile_args(cv.gapi.kernels(GLookUpImpl)))
- self.assertEqual(42, out)
- out = comp.apply(cv.gin(table, 'str'), args=cv.gapi.compile_args(cv.gapi.kernels(GLookUpImpl)))
- self.assertEqual('hello, world!', out)
- out = comp.apply(cv.gin(table, 'tuple'), args=cv.gapi.compile_args(cv.gapi.kernels(GLookUpImpl)))
- self.assertEqual((42, 42), out)
- def test_array_with_custom_type(self):
- @cv.gapi.op('custom.op', in_types=[cv.GArray.Any, cv.GArray.Any], out_types=[cv.GArray.Any])
- class GConcat:
- @staticmethod
- def outMeta(arr_desc0, arr_desc1):
- return cv.empty_array_desc()
- @cv.gapi.kernel(GConcat)
- class GConcatImpl:
- @staticmethod
- def run(arr0, arr1):
- return arr0 + arr1
- g_arr0 = cv.GArray.Any()
- g_arr1 = cv.GArray.Any()
- g_out = GConcat.on(g_arr0, g_arr1)
- comp = cv.GComputation(cv.GIn(g_arr0, g_arr1), cv.GOut(g_out))
- arr0 = ((2, 2), 2.0)
- arr1 = (3, 'str')
- out = comp.apply(cv.gin(arr0, arr1),
- args=cv.gapi.compile_args(cv.gapi.kernels(GConcatImpl)))
- self.assertEqual(arr0 + arr1, out)
- def test_raise_in_kernel(self):
- @cv.gapi.op('custom.op', in_types=[cv.GMat, cv.GMat], out_types=[cv.GMat])
- class GAdd:
- @staticmethod
- def outMeta(desc0, desc1):
- return desc0
- @cv.gapi.kernel(GAdd)
- class GAddImpl:
- @staticmethod
- def run(img0, img1):
- raise Exception('Error')
- return img0 + img1
- g_in0 = cv.GMat()
- g_in1 = cv.GMat()
- g_out = GAdd.on(g_in0, g_in1)
- comp = cv.GComputation(cv.GIn(g_in0, g_in1), cv.GOut(g_out))
- img0 = np.array([1, 2, 3])
- img1 = np.array([1, 2, 3])
- with self.assertRaises(Exception): comp.apply(cv.gin(img0, img1),
- args=cv.gapi.compile_args(
- cv.gapi.kernels(GAddImpl)))
- def test_raise_in_outMeta(self):
- @cv.gapi.op('custom.op', in_types=[cv.GMat, cv.GMat], out_types=[cv.GMat])
- class GAdd:
- @staticmethod
- def outMeta(desc0, desc1):
- raise NotImplementedError("outMeta isn't implemented")
- @cv.gapi.kernel(GAdd)
- class GAddImpl:
- @staticmethod
- def run(img0, img1):
- return img0 + img1
- g_in0 = cv.GMat()
- g_in1 = cv.GMat()
- g_out = GAdd.on(g_in0, g_in1)
- comp = cv.GComputation(cv.GIn(g_in0, g_in1), cv.GOut(g_out))
- img0 = np.array([1, 2, 3])
- img1 = np.array([1, 2, 3])
- with self.assertRaises(Exception): comp.apply(cv.gin(img0, img1),
- args=cv.gapi.compile_args(
- cv.gapi.kernels(GAddImpl)))
- def test_invalid_outMeta(self):
- @cv.gapi.op('custom.op', in_types=[cv.GMat, cv.GMat], out_types=[cv.GMat])
- class GAdd:
- @staticmethod
- def outMeta(desc0, desc1):
- # Invalid outMeta
- return cv.empty_gopaque_desc()
- @cv.gapi.kernel(GAdd)
- class GAddImpl:
- @staticmethod
- def run(img0, img1):
- return img0 + img1
- g_in0 = cv.GMat()
- g_in1 = cv.GMat()
- g_out = GAdd.on(g_in0, g_in1)
- comp = cv.GComputation(cv.GIn(g_in0, g_in1), cv.GOut(g_out))
- img0 = np.array([1, 2, 3])
- img1 = np.array([1, 2, 3])
- # FIXME: Cause Bad variant access.
- # Need to provide more descriptive error messsage.
- with self.assertRaises(Exception): comp.apply(cv.gin(img0, img1),
- args=cv.gapi.compile_args(
- cv.gapi.kernels(GAddImpl)))
- def test_pipeline_with_custom_kernels(self):
- @cv.gapi.op('custom.resize', in_types=[cv.GMat, tuple], out_types=[cv.GMat])
- class GResize:
- @staticmethod
- def outMeta(desc, size):
- return desc.withSize(size)
- @cv.gapi.kernel(GResize)
- class GResizeImpl:
- @staticmethod
- def run(img, size):
- return cv.resize(img, size)
- @cv.gapi.op('custom.transpose', in_types=[cv.GMat, tuple], out_types=[cv.GMat])
- class GTranspose:
- @staticmethod
- def outMeta(desc, order):
- return desc
- @cv.gapi.kernel(GTranspose)
- class GTransposeImpl:
- @staticmethod
- def run(img, order):
- return np.transpose(img, order)
- img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
- img = cv.imread(img_path)
- size = (32, 32)
- order = (1, 0, 2)
- # Dummy pipeline just to validate this case:
- # gapi -> custom -> custom -> gapi
- # OpenCV
- expected = cv.cvtColor(img, cv.COLOR_BGR2RGB)
- expected = cv.resize(expected, size)
- expected = np.transpose(expected, order)
- expected = cv.mean(expected)
- # G-API
- g_bgr = cv.GMat()
- g_rgb = cv.gapi.BGR2RGB(g_bgr)
- g_resized = GResize.on(g_rgb, size)
- g_transposed = GTranspose.on(g_resized, order)
- g_mean = cv.gapi.mean(g_transposed)
- comp = cv.GComputation(cv.GIn(g_bgr), cv.GOut(g_mean))
- actual = comp.apply(cv.gin(img), args=cv.gapi.compile_args(
- cv.gapi.kernels(GResizeImpl, GTransposeImpl)))
- self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
- except unittest.SkipTest as e:
- message = str(e)
- class TestSkip(unittest.TestCase):
- def setUp(self):
- self.skipTest('Skip tests: ' + message)
- def test_skip():
- pass
- pass
- if __name__ == '__main__':
- NewOpenCVTests.bootstrap()
|