123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341 |
- #!/usr/bin/env python
- import numpy as np
- import cv2 as cv
- import os
- import sys
- import unittest
- from tests_common import NewOpenCVTests
- try:
- if sys.version_info[:2] < (3, 0):
- raise unittest.SkipTest('Python 2.x is not supported')
- class test_gapi_infer(NewOpenCVTests):
- def infer_reference_network(self, model_path, weights_path, img):
- net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
- net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
- net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
- blob = cv.dnn.blobFromImage(img)
- net.setInput(blob)
- return net.forward(net.getUnconnectedOutLayersNames())
- def make_roi(self, img, roi):
- return img[roi[1]:roi[1] + roi[3], roi[0]:roi[0] + roi[2], ...]
- def test_age_gender_infer(self):
- # NB: Check IE
- if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
- return
- root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
- model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
- weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
- device_id = 'CPU'
- img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
- img = cv.resize(cv.imread(img_path), (62,62))
- # OpenCV DNN
- dnn_age, dnn_gender = self.infer_reference_network(model_path, weights_path, img)
- # OpenCV G-API
- g_in = cv.GMat()
- inputs = cv.GInferInputs()
- inputs.setInput('data', g_in)
- outputs = cv.gapi.infer("net", inputs)
- age_g = outputs.at("age_conv3")
- gender_g = outputs.at("prob")
- comp = cv.GComputation(cv.GIn(g_in), cv.GOut(age_g, gender_g))
- pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
- gapi_age, gapi_gender = comp.apply(cv.gin(img), args=cv.gapi.compile_args(cv.gapi.networks(pp)))
- # Check
- self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
- self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
- def test_age_gender_infer_roi(self):
- # NB: Check IE
- if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
- return
- root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
- model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
- weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
- device_id = 'CPU'
- img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
- img = cv.imread(img_path)
- roi = (10, 10, 62, 62)
- # OpenCV DNN
- dnn_age, dnn_gender = self.infer_reference_network(model_path,
- weights_path,
- self.make_roi(img, roi))
- # OpenCV G-API
- g_in = cv.GMat()
- g_roi = cv.GOpaqueT(cv.gapi.CV_RECT)
- inputs = cv.GInferInputs()
- inputs.setInput('data', g_in)
- outputs = cv.gapi.infer("net", g_roi, inputs)
- age_g = outputs.at("age_conv3")
- gender_g = outputs.at("prob")
- comp = cv.GComputation(cv.GIn(g_in, g_roi), cv.GOut(age_g, gender_g))
- pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
- gapi_age, gapi_gender = comp.apply(cv.gin(img, roi), args=cv.gapi.compile_args(cv.gapi.networks(pp)))
- # Check
- self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
- self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
- def test_age_gender_infer_roi_list(self):
- # NB: Check IE
- if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
- return
- root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
- model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
- weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
- device_id = 'CPU'
- rois = [(10, 15, 62, 62), (23, 50, 62, 62), (14, 100, 62, 62), (80, 50, 62, 62)]
- img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
- img = cv.imread(img_path)
- # OpenCV DNN
- dnn_age_list = []
- dnn_gender_list = []
- for roi in rois:
- age, gender = self.infer_reference_network(model_path,
- weights_path,
- self.make_roi(img, roi))
- dnn_age_list.append(age)
- dnn_gender_list.append(gender)
- # OpenCV G-API
- g_in = cv.GMat()
- g_rois = cv.GArrayT(cv.gapi.CV_RECT)
- inputs = cv.GInferInputs()
- inputs.setInput('data', g_in)
- outputs = cv.gapi.infer("net", g_rois, inputs)
- age_g = outputs.at("age_conv3")
- gender_g = outputs.at("prob")
- comp = cv.GComputation(cv.GIn(g_in, g_rois), cv.GOut(age_g, gender_g))
- pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
- gapi_age_list, gapi_gender_list = comp.apply(cv.gin(img, rois),
- args=cv.gapi.compile_args(cv.gapi.networks(pp)))
- # Check
- for gapi_age, gapi_gender, dnn_age, dnn_gender in zip(gapi_age_list,
- gapi_gender_list,
- dnn_age_list,
- dnn_gender_list):
- self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
- self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
- def test_age_gender_infer2_roi(self):
- # NB: Check IE
- if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
- return
- root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
- model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
- weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
- device_id = 'CPU'
- rois = [(10, 15, 62, 62), (23, 50, 62, 62), (14, 100, 62, 62), (80, 50, 62, 62)]
- img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
- img = cv.imread(img_path)
- # OpenCV DNN
- dnn_age_list = []
- dnn_gender_list = []
- for roi in rois:
- age, gender = self.infer_reference_network(model_path,
- weights_path,
- self.make_roi(img, roi))
- dnn_age_list.append(age)
- dnn_gender_list.append(gender)
- # OpenCV G-API
- g_in = cv.GMat()
- g_rois = cv.GArrayT(cv.gapi.CV_RECT)
- inputs = cv.GInferListInputs()
- inputs.setInput('data', g_rois)
- outputs = cv.gapi.infer2("net", g_in, inputs)
- age_g = outputs.at("age_conv3")
- gender_g = outputs.at("prob")
- comp = cv.GComputation(cv.GIn(g_in, g_rois), cv.GOut(age_g, gender_g))
- pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
- gapi_age_list, gapi_gender_list = comp.apply(cv.gin(img, rois),
- args=cv.gapi.compile_args(cv.gapi.networks(pp)))
- # Check
- for gapi_age, gapi_gender, dnn_age, dnn_gender in zip(gapi_age_list,
- gapi_gender_list,
- dnn_age_list,
- dnn_gender_list):
- self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
- self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
- def test_person_detection_retail_0013(self):
- # NB: Check IE
- if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
- return
- root_path = '/omz_intel_models/intel/person-detection-retail-0013/FP32/person-detection-retail-0013'
- model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
- weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
- img_path = self.find_file('gpu/lbpcascade/er.png', [os.environ.get('OPENCV_TEST_DATA_PATH')])
- device_id = 'CPU'
- img = cv.resize(cv.imread(img_path), (544, 320))
- # OpenCV DNN
- net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
- net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
- net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
- blob = cv.dnn.blobFromImage(img)
- def parseSSD(detections, size):
- h, w = size
- bboxes = []
- detections = detections.reshape(-1, 7)
- for sample_id, class_id, confidence, xmin, ymin, xmax, ymax in detections:
- if confidence >= 0.5:
- x = int(xmin * w)
- y = int(ymin * h)
- width = int(xmax * w - x)
- height = int(ymax * h - y)
- bboxes.append((x, y, width, height))
- return bboxes
- net.setInput(blob)
- dnn_detections = net.forward()
- dnn_boxes = parseSSD(np.array(dnn_detections), img.shape[:2])
- # OpenCV G-API
- g_in = cv.GMat()
- inputs = cv.GInferInputs()
- inputs.setInput('data', g_in)
- g_sz = cv.gapi.streaming.size(g_in)
- outputs = cv.gapi.infer("net", inputs)
- detections = outputs.at("detection_out")
- bboxes = cv.gapi.parseSSD(detections, g_sz, 0.5, False, False)
- comp = cv.GComputation(cv.GIn(g_in), cv.GOut(bboxes))
- pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
- gapi_boxes = comp.apply(cv.gin(img.astype(np.float32)),
- args=cv.gapi.compile_args(cv.gapi.networks(pp)))
- # Comparison
- self.assertEqual(0.0, cv.norm(np.array(dnn_boxes).flatten(),
- np.array(gapi_boxes).flatten(),
- cv.NORM_INF))
- def test_person_detection_retail_0013(self):
- # NB: Check IE
- if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
- return
- root_path = '/omz_intel_models/intel/person-detection-retail-0013/FP32/person-detection-retail-0013'
- model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
- weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
- img_path = self.find_file('gpu/lbpcascade/er.png', [os.environ.get('OPENCV_TEST_DATA_PATH')])
- device_id = 'CPU'
- img = cv.resize(cv.imread(img_path), (544, 320))
- # OpenCV DNN
- net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
- net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
- net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
- blob = cv.dnn.blobFromImage(img)
- def parseSSD(detections, size):
- h, w = size
- bboxes = []
- detections = detections.reshape(-1, 7)
- for sample_id, class_id, confidence, xmin, ymin, xmax, ymax in detections:
- if confidence >= 0.5:
- x = int(xmin * w)
- y = int(ymin * h)
- width = int(xmax * w - x)
- height = int(ymax * h - y)
- bboxes.append((x, y, width, height))
- return bboxes
- net.setInput(blob)
- dnn_detections = net.forward()
- dnn_boxes = parseSSD(np.array(dnn_detections), img.shape[:2])
- # OpenCV G-API
- g_in = cv.GMat()
- inputs = cv.GInferInputs()
- inputs.setInput('data', g_in)
- g_sz = cv.gapi.streaming.size(g_in)
- outputs = cv.gapi.infer("net", inputs)
- detections = outputs.at("detection_out")
- bboxes = cv.gapi.parseSSD(detections, g_sz, 0.5, False, False)
- comp = cv.GComputation(cv.GIn(g_in), cv.GOut(bboxes))
- pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
- gapi_boxes = comp.apply(cv.gin(img.astype(np.float32)),
- args=cv.gapi.compile_args(cv.gapi.networks(pp)))
- # Comparison
- self.assertEqual(0.0, cv.norm(np.array(dnn_boxes).flatten(),
- np.array(gapi_boxes).flatten(),
- cv.NORM_INF))
- except unittest.SkipTest as e:
- message = str(e)
- class TestSkip(unittest.TestCase):
- def setUp(self):
- self.skipTest('Skip tests: ' + message)
- def test_skip():
- pass
- pass
- if __name__ == '__main__':
- NewOpenCVTests.bootstrap()
|