123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Copyright (C) 2014, Itseez Inc, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- #ifdef HAVE_OPENCV_FLANN
- using namespace cv::flann;
- #endif
- //--------------------------------------------------------------------------------
- class NearestNeighborTest : public cvtest::BaseTest
- {
- public:
- NearestNeighborTest() {}
- protected:
- static const int minValue = 0;
- static const int maxValue = 1;
- static const int dims = 30;
- static const int featuresCount = 2000;
- static const int K = 1; // * should also test 2nd nn etc.?
- virtual void run( int start_from );
- virtual void createModel( const Mat& data ) = 0;
- virtual int findNeighbors( Mat& points, Mat& neighbors ) = 0;
- virtual int checkGetPoints( const Mat& data );
- virtual int checkFindBoxed();
- virtual int checkFind( const Mat& data );
- virtual void releaseModel() = 0;
- };
- int NearestNeighborTest::checkGetPoints( const Mat& )
- {
- return cvtest::TS::OK;
- }
- int NearestNeighborTest::checkFindBoxed()
- {
- return cvtest::TS::OK;
- }
- int NearestNeighborTest::checkFind( const Mat& data )
- {
- int code = cvtest::TS::OK;
- int pointsCount = 1000;
- float noise = 0.2f;
- RNG rng;
- Mat points( pointsCount, dims, CV_32FC1 );
- Mat results( pointsCount, K, CV_32SC1 );
- std::vector<int> fmap( pointsCount );
- for( int pi = 0; pi < pointsCount; pi++ )
- {
- int fi = rng.next() % featuresCount;
- fmap[pi] = fi;
- for( int d = 0; d < dims; d++ )
- points.at<float>(pi, d) = data.at<float>(fi, d) + rng.uniform(0.0f, 1.0f) * noise;
- }
- code = findNeighbors( points, results );
- if( code == cvtest::TS::OK )
- {
- int correctMatches = 0;
- for( int pi = 0; pi < pointsCount; pi++ )
- {
- if( fmap[pi] == results.at<int>(pi, 0) )
- correctMatches++;
- }
- double correctPerc = correctMatches / (double)pointsCount;
- EXPECT_GE(correctPerc, .75) << "correctMatches=" << correctMatches << " pointsCount=" << pointsCount;
- }
- return code;
- }
- void NearestNeighborTest::run( int /*start_from*/ ) {
- int code = cvtest::TS::OK, tempCode;
- Mat desc( featuresCount, dims, CV_32FC1 );
- ts->get_rng().fill( desc, RNG::UNIFORM, minValue, maxValue );
- createModel( desc.clone() ); // .clone() is used to simulate dangling pointers problem: https://github.com/opencv/opencv/issues/17553
- tempCode = checkGetPoints( desc );
- if( tempCode != cvtest::TS::OK )
- {
- ts->printf( cvtest::TS::LOG, "bad accuracy of GetPoints \n" );
- code = tempCode;
- }
- tempCode = checkFindBoxed();
- if( tempCode != cvtest::TS::OK )
- {
- ts->printf( cvtest::TS::LOG, "bad accuracy of FindBoxed \n" );
- code = tempCode;
- }
- tempCode = checkFind( desc );
- if( tempCode != cvtest::TS::OK )
- {
- ts->printf( cvtest::TS::LOG, "bad accuracy of Find \n" );
- code = tempCode;
- }
- releaseModel();
- if (::testing::Test::HasFailure()) code = cvtest::TS::FAIL_BAD_ACCURACY;
- ts->set_failed_test_info( code );
- }
- //--------------------------------------------------------------------------------
- #ifdef HAVE_OPENCV_FLANN
- class CV_FlannTest : public NearestNeighborTest
- {
- public:
- CV_FlannTest() : NearestNeighborTest(), index(NULL) { }
- protected:
- void createIndex( const Mat& data, const IndexParams& params );
- int knnSearch( Mat& points, Mat& neighbors );
- int radiusSearch( Mat& points, Mat& neighbors );
- virtual void releaseModel();
- Index* index;
- };
- void CV_FlannTest::createIndex( const Mat& data, const IndexParams& params )
- {
- // release previously allocated index
- releaseModel();
- index = new Index( data, params );
- }
- int CV_FlannTest::knnSearch( Mat& points, Mat& neighbors )
- {
- Mat dist( points.rows, neighbors.cols, CV_32FC1);
- int knn = 1, j;
- // 1st way
- index->knnSearch( points, neighbors, dist, knn, SearchParams() );
- // 2nd way
- Mat neighbors1( neighbors.size(), CV_32SC1 );
- for( int i = 0; i < points.rows; i++ )
- {
- float* fltPtr = points.ptr<float>(i);
- vector<float> query( fltPtr, fltPtr + points.cols );
- vector<int> indices( neighbors1.cols, 0 );
- vector<float> dists( dist.cols, 0 );
- index->knnSearch( query, indices, dists, knn, SearchParams() );
- vector<int>::const_iterator it = indices.begin();
- for( j = 0; it != indices.end(); ++it, j++ )
- neighbors1.at<int>(i,j) = *it;
- }
- // compare results
- EXPECT_LE(cvtest::norm(neighbors, neighbors1, NORM_L1), 0);
- return ::testing::Test::HasFailure() ? cvtest::TS::FAIL_BAD_ACCURACY : cvtest::TS::OK;
- }
- int CV_FlannTest::radiusSearch( Mat& points, Mat& neighbors )
- {
- Mat dist( 1, neighbors.cols, CV_32FC1);
- Mat neighbors1( neighbors.size(), CV_32SC1 );
- float radius = 10.0f;
- int j;
- // radiusSearch can only search one feature at a time for range search
- for( int i = 0; i < points.rows; i++ )
- {
- // 1st way
- Mat p( 1, points.cols, CV_32FC1, points.ptr<float>(i) ),
- n( 1, neighbors.cols, CV_32SC1, neighbors.ptr<int>(i) );
- index->radiusSearch( p, n, dist, radius, neighbors.cols, SearchParams() );
- // 2nd way
- float* fltPtr = points.ptr<float>(i);
- vector<float> query( fltPtr, fltPtr + points.cols );
- vector<int> indices( neighbors1.cols, 0 );
- vector<float> dists( dist.cols, 0 );
- index->radiusSearch( query, indices, dists, radius, neighbors.cols, SearchParams() );
- vector<int>::const_iterator it = indices.begin();
- for( j = 0; it != indices.end(); ++it, j++ )
- neighbors1.at<int>(i,j) = *it;
- }
- // compare results
- EXPECT_LE(cvtest::norm(neighbors, neighbors1, NORM_L1), 0);
- return ::testing::Test::HasFailure() ? cvtest::TS::FAIL_BAD_ACCURACY : cvtest::TS::OK;
- }
- void CV_FlannTest::releaseModel()
- {
- if (index)
- {
- delete index;
- index = NULL;
- }
- }
- //---------------------------------------
- class CV_FlannLinearIndexTest : public CV_FlannTest
- {
- public:
- CV_FlannLinearIndexTest() {}
- protected:
- virtual void createModel( const Mat& data ) { createIndex( data, LinearIndexParams() ); }
- virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
- };
- //---------------------------------------
- class CV_FlannKMeansIndexTest : public CV_FlannTest
- {
- public:
- CV_FlannKMeansIndexTest() {}
- protected:
- virtual void createModel( const Mat& data ) { createIndex( data, KMeansIndexParams() ); }
- virtual int findNeighbors( Mat& points, Mat& neighbors ) { return radiusSearch( points, neighbors ); }
- };
- //---------------------------------------
- class CV_FlannKDTreeIndexTest : public CV_FlannTest
- {
- public:
- CV_FlannKDTreeIndexTest() {}
- protected:
- virtual void createModel( const Mat& data ) { createIndex( data, KDTreeIndexParams() ); }
- virtual int findNeighbors( Mat& points, Mat& neighbors ) { return radiusSearch( points, neighbors ); }
- };
- //----------------------------------------
- class CV_FlannCompositeIndexTest : public CV_FlannTest
- {
- public:
- CV_FlannCompositeIndexTest() {}
- protected:
- virtual void createModel( const Mat& data ) { createIndex( data, CompositeIndexParams() ); }
- virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
- };
- //----------------------------------------
- class CV_FlannAutotunedIndexTest : public CV_FlannTest
- {
- public:
- CV_FlannAutotunedIndexTest() {}
- protected:
- virtual void createModel( const Mat& data ) { createIndex( data, AutotunedIndexParams() ); }
- virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
- };
- //----------------------------------------
- class CV_FlannSavedIndexTest : public CV_FlannTest
- {
- public:
- CV_FlannSavedIndexTest() {}
- protected:
- virtual void createModel( const Mat& data );
- virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
- };
- void CV_FlannSavedIndexTest::createModel(const cv::Mat &data)
- {
- switch ( cvtest::randInt(ts->get_rng()) % 2 )
- {
- //case 0: createIndex( data, LinearIndexParams() ); break; // nothing to save for linear search
- case 0: createIndex( data, KMeansIndexParams() ); break;
- case 1: createIndex( data, KDTreeIndexParams() ); break;
- //case 2: createIndex( data, CompositeIndexParams() ); break; // nothing to save for linear search
- //case 2: createIndex( data, AutotunedIndexParams() ); break; // possible linear index !
- default: CV_Assert(0);
- }
- string filename = tempfile();
- index->save( filename );
- createIndex( data, SavedIndexParams(filename.c_str()));
- remove( filename.c_str() );
- }
- TEST(Features2d_FLANN_Linear, regression) { CV_FlannLinearIndexTest test; test.safe_run(); }
- TEST(Features2d_FLANN_KMeans, regression) { CV_FlannKMeansIndexTest test; test.safe_run(); }
- TEST(Features2d_FLANN_KDTree, regression) { CV_FlannKDTreeIndexTest test; test.safe_run(); }
- TEST(Features2d_FLANN_Composite, regression) { CV_FlannCompositeIndexTest test; test.safe_run(); }
- TEST(Features2d_FLANN_Auto, regression) { CV_FlannAutotunedIndexTest test; test.safe_run(); }
- TEST(Features2d_FLANN_Saved, regression) { CV_FlannSavedIndexTest test; test.safe_run(); }
- #endif
- }} // namespace
|