123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- #undef RENDER_MSERS
- #define RENDER_MSERS 0
- #if defined RENDER_MSERS && RENDER_MSERS
- static void renderMSERs(const Mat& gray, Mat& img, const vector<vector<Point> >& msers)
- {
- cvtColor(gray, img, COLOR_GRAY2BGR);
- RNG rng((uint64)1749583);
- for( int i = 0; i < (int)msers.size(); i++ )
- {
- uchar b = rng.uniform(0, 256);
- uchar g = rng.uniform(0, 256);
- uchar r = rng.uniform(0, 256);
- Vec3b color(b, g, r);
- const Point* pt = &msers[i][0];
- size_t j, n = msers[i].size();
- for( j = 0; j < n; j++ )
- img.at<Vec3b>(pt[j]) = color;
- }
- }
- #endif
- TEST(Features2d_MSER, cases)
- {
- uchar buf[] =
- {
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255
- };
- Mat big_image = imread(cvtest::TS::ptr()->get_data_path() + "mser/puzzle.png", 0);
- Mat small_image(14, 26, CV_8U, buf);
- static const int thresharr[] = { 0, 70, 120, 180, 255 };
- const int kDelta = 5;
- Ptr<MSER> mserExtractor = MSER::create( kDelta );
- vector<vector<Point> > msers;
- vector<Rect> boxes;
- RNG rng((uint64)123456);
- for( int i = 0; i < 100; i++ )
- {
- bool use_big_image = rng.uniform(0, 7) != 0;
- bool invert = rng.uniform(0, 2) != 0;
- bool binarize = use_big_image ? rng.uniform(0, 5) != 0 : false;
- bool blur = rng.uniform(0, 2) != 0;
- int thresh = thresharr[rng.uniform(0, 5)];
- /*if( i == 0 )
- {
- use_big_image = true;
- invert = binarize = blur = false;
- }*/
- const Mat& src0 = use_big_image ? big_image : small_image;
- Mat src = src0.clone();
- int kMinArea = use_big_image ? 256 : 10;
- int kMaxArea = (int)src.total()/4;
- mserExtractor->setMinArea(kMinArea);
- mserExtractor->setMaxArea(kMaxArea);
- if( invert )
- bitwise_not(src, src);
- if( binarize )
- cv::threshold(src, src, thresh, 255, THRESH_BINARY);
- if( blur )
- GaussianBlur(src, src, Size(5, 5), 1.5, 1.5);
- int minRegs = use_big_image ? 7 : 2;
- int maxRegs = use_big_image ? 1000 : 20;
- if( binarize && (thresh == 0 || thresh == 255) )
- minRegs = maxRegs = 0;
- mserExtractor->detectRegions( src, msers, boxes );
- int nmsers = (int)msers.size();
- ASSERT_EQ(nmsers, (int)boxes.size());
- if( maxRegs < nmsers || minRegs > nmsers )
- {
- printf("%d. minArea=%d, maxArea=%d, nmsers=%d, minRegs=%d, maxRegs=%d, "
- "image=%s, invert=%d, binarize=%d, thresh=%d, blur=%d\n",
- i, kMinArea, kMaxArea, nmsers, minRegs, maxRegs, use_big_image ? "big" : "small",
- (int)invert, (int)binarize, thresh, (int)blur);
- #if defined RENDER_MSERS && RENDER_MSERS
- Mat image;
- imshow("source", src);
- renderMSERs(src, image, msers);
- imshow("result", image);
- waitKey();
- #endif
- }
- ASSERT_LE(minRegs, nmsers);
- ASSERT_GE(maxRegs, nmsers);
- }
- }
- TEST(Features2d_MSER, history_update_regression)
- {
- String dataPath = cvtest::TS::ptr()->get_data_path() + "mser/";
- vector<Mat> tstImages;
- tstImages.push_back(imread(dataPath + "mser_test.png", IMREAD_GRAYSCALE));
- tstImages.push_back(imread(dataPath + "mser_test2.png", IMREAD_GRAYSCALE));
- for(size_t j = 0; j < tstImages.size(); j++)
- {
- size_t previous_size = 0;
- for(int minArea = 100; minArea > 10; minArea--)
- {
- Ptr<MSER> mser = MSER::create(1, minArea, (int)(tstImages[j].cols * tstImages[j].rows * 0.2));
- mser->setPass2Only(true);
- vector<vector<Point> > mserContours;
- vector<Rect> boxRects;
- mser->detectRegions(tstImages[j], mserContours, boxRects);
- ASSERT_LE(previous_size, mserContours.size());
- previous_size = mserContours.size();
- }
- }
- }
- }} // namespace
|