123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html
- #include "test_invariance_utils.hpp"
- namespace opencv_test { namespace {
- #define SHOW_DEBUG_LOG 1
- typedef tuple<std::string, Ptr<FeatureDetector>, float, float> String_FeatureDetector_Float_Float_t;
- static
- void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H,
- const vector<KeyPoint>& keypoints1,
- vector<DMatch>& matches)
- {
- vector<Point2f> points0;
- KeyPoint::convert(keypoints0, points0);
- Mat points0t;
- if(H.empty())
- points0t = Mat(points0);
- else
- perspectiveTransform(Mat(points0), points0t, H);
- matches.clear();
- vector<uchar> usedMask(keypoints1.size(), 0);
- for(int i0 = 0; i0 < static_cast<int>(keypoints0.size()); i0++)
- {
- int nearestPointIndex = -1;
- float maxIntersectRatio = 0.f;
- const float r0 = 0.5f * keypoints0[i0].size;
- for(size_t i1 = 0; i1 < keypoints1.size(); i1++)
- {
- if(nearestPointIndex >= 0 && usedMask[i1])
- continue;
- float r1 = 0.5f * keypoints1[i1].size;
- float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(i0), r0,
- keypoints1[i1].pt, r1);
- if(intersectRatio > maxIntersectRatio)
- {
- maxIntersectRatio = intersectRatio;
- nearestPointIndex = static_cast<int>(i1);
- }
- }
- matches.push_back(DMatch(i0, nearestPointIndex, maxIntersectRatio));
- if(nearestPointIndex >= 0)
- usedMask[nearestPointIndex] = 1;
- }
- }
- class DetectorInvariance : public TestWithParam<String_FeatureDetector_Float_Float_t>
- {
- protected:
- virtual void SetUp() {
- // Read test data
- const std::string filename = cvtest::TS::ptr()->get_data_path() + get<0>(GetParam());
- image0 = imread(filename);
- ASSERT_FALSE(image0.empty()) << "couldn't read input image";
- featureDetector = get<1>(GetParam());
- minKeyPointMatchesRatio = get<2>(GetParam());
- minInliersRatio = get<3>(GetParam());
- }
- Ptr<FeatureDetector> featureDetector;
- float minKeyPointMatchesRatio;
- float minInliersRatio;
- Mat image0;
- };
- typedef DetectorInvariance DetectorScaleInvariance;
- typedef DetectorInvariance DetectorRotationInvariance;
- TEST_P(DetectorRotationInvariance, rotation)
- {
- Mat image1, mask1;
- const int borderSize = 16;
- Mat mask0(image0.size(), CV_8UC1, Scalar(0));
- mask0(Rect(borderSize, borderSize, mask0.cols - 2*borderSize, mask0.rows - 2*borderSize)).setTo(Scalar(255));
- vector<KeyPoint> keypoints0;
- featureDetector->detect(image0, keypoints0, mask0);
- EXPECT_GE(keypoints0.size(), 15u);
- const int maxAngle = 360, angleStep = 15;
- for(int angle = 0; angle < maxAngle; angle += angleStep)
- {
- Mat H = rotateImage(image0, mask0, static_cast<float>(angle), image1, mask1);
- vector<KeyPoint> keypoints1;
- featureDetector->detect(image1, keypoints1, mask1);
- vector<DMatch> matches;
- matchKeyPoints(keypoints0, H, keypoints1, matches);
- int angleInliersCount = 0;
- const float minIntersectRatio = 0.5f;
- int keyPointMatchesCount = 0;
- for(size_t m = 0; m < matches.size(); m++)
- {
- if(matches[m].distance < minIntersectRatio)
- continue;
- keyPointMatchesCount++;
- // Check does this inlier have consistent angles
- const float maxAngleDiff = 15.f; // grad
- float angle0 = keypoints0[matches[m].queryIdx].angle;
- float angle1 = keypoints1[matches[m].trainIdx].angle;
- ASSERT_FALSE(angle0 == -1 || angle1 == -1) << "Given FeatureDetector is not rotation invariant, it can not be tested here.";
- ASSERT_GE(angle0, 0.f);
- ASSERT_LT(angle0, 360.f);
- ASSERT_GE(angle1, 0.f);
- ASSERT_LT(angle1, 360.f);
- float rotAngle0 = angle0 + angle;
- if(rotAngle0 >= 360.f)
- rotAngle0 -= 360.f;
- float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1);
- angleDiff = std::min(angleDiff, static_cast<float>(360.f - angleDiff));
- ASSERT_GE(angleDiff, 0.f);
- bool isAngleCorrect = angleDiff < maxAngleDiff;
- if(isAngleCorrect)
- angleInliersCount++;
- }
- float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
- EXPECT_GE(keyPointMatchesRatio, minKeyPointMatchesRatio) << "angle: " << angle;
- if(keyPointMatchesCount)
- {
- float angleInliersRatio = static_cast<float>(angleInliersCount) / keyPointMatchesCount;
- EXPECT_GE(angleInliersRatio, minInliersRatio) << "angle: " << angle;
- }
- #if SHOW_DEBUG_LOG
- std::cout
- << "angle = " << angle
- << ", keypoints = " << keypoints1.size()
- << ", keyPointMatchesRatio = " << keyPointMatchesRatio
- << ", angleInliersRatio = " << (keyPointMatchesCount ? (static_cast<float>(angleInliersCount) / keyPointMatchesCount) : 0)
- << std::endl;
- #endif
- }
- }
- TEST_P(DetectorScaleInvariance, scale)
- {
- vector<KeyPoint> keypoints0;
- featureDetector->detect(image0, keypoints0);
- EXPECT_GE(keypoints0.size(), 15u);
- for(int scaleIdx = 1; scaleIdx <= 3; scaleIdx++)
- {
- float scale = 1.f + scaleIdx * 0.5f;
- Mat image1;
- resize(image0, image1, Size(), 1./scale, 1./scale, INTER_LINEAR_EXACT);
- vector<KeyPoint> keypoints1, osiKeypoints1; // osi - original size image
- featureDetector->detect(image1, keypoints1);
- EXPECT_GE(keypoints1.size(), 15u);
- EXPECT_LE(keypoints1.size(), keypoints0.size()) << "Strange behavior of the detector. "
- "It gives more points count in an image of the smaller size.";
- scaleKeyPoints(keypoints1, osiKeypoints1, scale);
- vector<DMatch> matches;
- // image1 is query image (it's reduced image0)
- // image0 is train image
- matchKeyPoints(osiKeypoints1, Mat(), keypoints0, matches);
- const float minIntersectRatio = 0.5f;
- int keyPointMatchesCount = 0;
- int scaleInliersCount = 0;
- for(size_t m = 0; m < matches.size(); m++)
- {
- if(matches[m].distance < minIntersectRatio)
- continue;
- keyPointMatchesCount++;
- // Check does this inlier have consistent sizes
- const float maxSizeDiff = 0.8f;//0.9f; // grad
- float size0 = keypoints0[matches[m].trainIdx].size;
- float size1 = osiKeypoints1[matches[m].queryIdx].size;
- ASSERT_GT(size0, 0);
- ASSERT_GT(size1, 0);
- if(std::min(size0, size1) > maxSizeDiff * std::max(size0, size1))
- scaleInliersCount++;
- }
- float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
- EXPECT_GE(keyPointMatchesRatio, minKeyPointMatchesRatio);
- if(keyPointMatchesCount)
- {
- float scaleInliersRatio = static_cast<float>(scaleInliersCount) / keyPointMatchesCount;
- EXPECT_GE(scaleInliersRatio, minInliersRatio);
- }
- #if SHOW_DEBUG_LOG
- std::cout
- << "scale = " << scale
- << ", keyPointMatchesRatio = " << keyPointMatchesRatio
- << ", scaleInliersRatio = " << (keyPointMatchesCount ? static_cast<float>(scaleInliersCount) / keyPointMatchesCount : 0)
- << std::endl;
- #endif
- }
- }
- #undef SHOW_DEBUG_LOG
- }} // namespace
- namespace std {
- using namespace opencv_test;
- static inline void PrintTo(const String_FeatureDetector_Float_Float_t& v, std::ostream* os)
- {
- *os << "(\"" << get<0>(v)
- << "\", " << get<2>(v)
- << ", " << get<3>(v)
- << ")";
- }
- } // namespace
|