123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html
- namespace opencv_test { namespace {
- /****************************************************************************************\
- * Regression tests for descriptor extractors. *
- \****************************************************************************************/
- static void writeMatInBin( const Mat& mat, const string& filename )
- {
- FILE* f = fopen( filename.c_str(), "wb");
- if( f )
- {
- CV_Assert(4 == sizeof(int));
- int type = mat.type();
- fwrite( (void*)&mat.rows, sizeof(int), 1, f );
- fwrite( (void*)&mat.cols, sizeof(int), 1, f );
- fwrite( (void*)&type, sizeof(int), 1, f );
- int dataSize = (int)(mat.step * mat.rows);
- fwrite( (void*)&dataSize, sizeof(int), 1, f );
- fwrite( (void*)mat.ptr(), 1, dataSize, f );
- fclose(f);
- }
- }
- static Mat readMatFromBin( const string& filename )
- {
- FILE* f = fopen( filename.c_str(), "rb" );
- if( f )
- {
- CV_Assert(4 == sizeof(int));
- int rows, cols, type, dataSize;
- size_t elements_read1 = fread( (void*)&rows, sizeof(int), 1, f );
- size_t elements_read2 = fread( (void*)&cols, sizeof(int), 1, f );
- size_t elements_read3 = fread( (void*)&type, sizeof(int), 1, f );
- size_t elements_read4 = fread( (void*)&dataSize, sizeof(int), 1, f );
- CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1);
- int step = dataSize / rows / CV_ELEM_SIZE(type);
- CV_Assert(step >= cols);
- Mat returnMat = Mat(rows, step, type).colRange(0, cols);
- size_t elements_read = fread( returnMat.ptr(), 1, dataSize, f );
- CV_Assert(elements_read == (size_t)(dataSize));
- fclose(f);
- return returnMat;
- }
- return Mat();
- }
- template<class Distance>
- class CV_DescriptorExtractorTest : public cvtest::BaseTest
- {
- public:
- typedef typename Distance::ValueType ValueType;
- typedef typename Distance::ResultType DistanceType;
- CV_DescriptorExtractorTest( const string _name, DistanceType _maxDist, const Ptr<DescriptorExtractor>& _dextractor,
- Distance d = Distance(), Ptr<FeatureDetector> _detector = Ptr<FeatureDetector>()):
- name(_name), maxDist(_maxDist), dextractor(_dextractor), distance(d) , detector(_detector) {}
- ~CV_DescriptorExtractorTest()
- {
- }
- protected:
- virtual void createDescriptorExtractor() {}
- void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors )
- {
- if( validDescriptors.size != calcDescriptors.size || validDescriptors.type() != calcDescriptors.type() )
- {
- ts->printf(cvtest::TS::LOG, "Valid and computed descriptors matrices must have the same size and type.\n");
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
- return;
- }
- CV_Assert( DataType<ValueType>::type == validDescriptors.type() );
- int dimension = validDescriptors.cols;
- DistanceType curMaxDist = 0;
- size_t exact_count = 0, failed_count = 0;
- for( int y = 0; y < validDescriptors.rows; y++ )
- {
- DistanceType dist = distance( validDescriptors.ptr<ValueType>(y), calcDescriptors.ptr<ValueType>(y), dimension );
- if (dist == 0)
- exact_count++;
- if( dist > curMaxDist )
- {
- if (dist > maxDist)
- failed_count++;
- curMaxDist = dist;
- }
- #if 0
- if (dist > 0)
- {
- std::cout << "i=" << y << " fail_count=" << failed_count << " dist=" << dist << std::endl;
- std::cout << "valid: " << validDescriptors.row(y) << std::endl;
- std::cout << " calc: " << calcDescriptors.row(y) << std::endl;
- }
- #endif
- }
- float exact_percents = (100 * (float)exact_count / validDescriptors.rows);
- float failed_percents = (100 * (float)failed_count / validDescriptors.rows);
- std::stringstream ss;
- ss << "Exact count (dist == 0): " << exact_count << " (" << (int)exact_percents << "%)" << std::endl
- << "Failed count (dist > " << maxDist << "): " << failed_count << " (" << (int)failed_percents << "%)" << std::endl
- << "Max distance between valid and computed descriptors (" << validDescriptors.size() << "): " << curMaxDist;
- EXPECT_LE(failed_percents, 20.0f);
- std::cout << ss.str() << std::endl;
- }
- void emptyDataTest()
- {
- assert( dextractor );
- // One image.
- Mat image;
- vector<KeyPoint> keypoints;
- Mat descriptors;
- try
- {
- dextractor->compute( image, keypoints, descriptors );
- }
- catch(...)
- {
- ts->printf( cvtest::TS::LOG, "compute() on empty image and empty keypoints must not generate exception (1).\n");
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
- }
- RNG rng;
- image = cvtest::randomMat(rng, Size(50, 50), CV_8UC3, 0, 255, false);
- try
- {
- dextractor->compute( image, keypoints, descriptors );
- }
- catch(...)
- {
- ts->printf( cvtest::TS::LOG, "compute() on nonempty image and empty keypoints must not generate exception (1).\n");
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
- }
- // Several images.
- vector<Mat> images;
- vector<vector<KeyPoint> > keypointsCollection;
- vector<Mat> descriptorsCollection;
- try
- {
- dextractor->compute( images, keypointsCollection, descriptorsCollection );
- }
- catch(...)
- {
- ts->printf( cvtest::TS::LOG, "compute() on empty images and empty keypoints collection must not generate exception (2).\n");
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
- }
- }
- void regressionTest()
- {
- assert( dextractor );
- // Read the test image.
- string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
- Mat img = imread( imgFilename );
- if( img.empty() )
- {
- ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
- return;
- }
- const std::string keypoints_filename = string(ts->get_data_path()) +
- (detector.empty()
- ? (FEATURES2D_DIR + "/" + std::string("keypoints.xml.gz"))
- : (DESCRIPTOR_DIR + "/" + name + "_keypoints.xml.gz"));
- FileStorage fs(keypoints_filename, FileStorage::READ);
- vector<KeyPoint> keypoints;
- EXPECT_TRUE(fs.isOpened()) << "Keypoint testdata is missing. Re-computing and re-writing keypoints testdata...";
- if (!fs.isOpened())
- {
- fs.open(keypoints_filename, FileStorage::WRITE);
- ASSERT_TRUE(fs.isOpened()) << "File for writing keypoints can not be opened.";
- if (detector.empty())
- {
- Ptr<ORB> fd = ORB::create();
- fd->detect(img, keypoints);
- }
- else
- {
- detector->detect(img, keypoints);
- }
- write(fs, "keypoints", keypoints);
- fs.release();
- }
- else
- {
- read(fs.getFirstTopLevelNode(), keypoints);
- fs.release();
- }
- if(!detector.empty())
- {
- vector<KeyPoint> calcKeypoints;
- detector->detect(img, calcKeypoints);
- // TODO validate received keypoints
- int diff = abs((int)calcKeypoints.size() - (int)keypoints.size());
- if (diff > 0)
- {
- std::cout << "Keypoints difference: " << diff << std::endl;
- EXPECT_LE(diff, (int)(keypoints.size() * 0.03f));
- }
- }
- ASSERT_FALSE(keypoints.empty());
- {
- Mat calcDescriptors;
- double t = (double)getTickCount();
- dextractor->compute(img, keypoints, calcDescriptors);
- t = getTickCount() - t;
- ts->printf(cvtest::TS::LOG, "\nAverage time of computing one descriptor = %g ms.\n", t/((double)getTickFrequency()*1000.)/calcDescriptors.rows);
- if (calcDescriptors.rows != (int)keypoints.size())
- {
- ts->printf( cvtest::TS::LOG, "Count of computed descriptors and keypoints count must be equal.\n" );
- ts->printf( cvtest::TS::LOG, "Count of keypoints is %d.\n", (int)keypoints.size() );
- ts->printf( cvtest::TS::LOG, "Count of computed descriptors is %d.\n", calcDescriptors.rows );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- return;
- }
- if (calcDescriptors.cols != dextractor->descriptorSize() || calcDescriptors.type() != dextractor->descriptorType())
- {
- ts->printf( cvtest::TS::LOG, "Incorrect descriptor size or descriptor type.\n" );
- ts->printf( cvtest::TS::LOG, "Expected size is %d.\n", dextractor->descriptorSize() );
- ts->printf( cvtest::TS::LOG, "Calculated size is %d.\n", calcDescriptors.cols );
- ts->printf( cvtest::TS::LOG, "Expected type is %d.\n", dextractor->descriptorType() );
- ts->printf( cvtest::TS::LOG, "Calculated type is %d.\n", calcDescriptors.type() );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- return;
- }
- // TODO read and write descriptor extractor parameters and check them
- Mat validDescriptors = readDescriptors();
- EXPECT_FALSE(validDescriptors.empty()) << "Descriptors testdata is missing. Re-writing descriptors testdata...";
- if (!validDescriptors.empty())
- {
- compareDescriptors(validDescriptors, calcDescriptors);
- }
- else
- {
- ASSERT_TRUE(writeDescriptors(calcDescriptors)) << "Descriptors can not be written.";
- }
- }
- }
- void run(int)
- {
- createDescriptorExtractor();
- if( !dextractor )
- {
- ts->printf(cvtest::TS::LOG, "Descriptor extractor is empty.\n");
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
- return;
- }
- emptyDataTest();
- regressionTest();
- ts->set_failed_test_info( cvtest::TS::OK );
- }
- virtual Mat readDescriptors()
- {
- Mat res = readMatFromBin( string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) );
- return res;
- }
- virtual bool writeDescriptors( Mat& descs )
- {
- writeMatInBin( descs, string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) );
- return true;
- }
- string name;
- const DistanceType maxDist;
- Ptr<DescriptorExtractor> dextractor;
- Distance distance;
- Ptr<FeatureDetector> detector;
- private:
- CV_DescriptorExtractorTest& operator=(const CV_DescriptorExtractorTest&) { return *this; }
- };
- }} // namespace
|