123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- // Copyright (C) 2017-2019, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- /*
- Test for Tensorflow models loading
- */
- #include "test_precomp.hpp"
- #include "npy_blob.hpp"
- #include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
- #include <opencv2/dnn/utils/debug_utils.hpp>
- namespace opencv_test
- {
- using namespace cv;
- using namespace cv::dnn;
- template<typename TString>
- static std::string _tf(TString filename)
- {
- return (getOpenCVExtraDir() + "/dnn/") + filename;
- }
- TEST(Test_TensorFlow, read_inception)
- {
- Net net;
- {
- const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
- net = readNetFromTensorflow(model);
- ASSERT_FALSE(net.empty());
- }
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- Mat sample = imread(_tf("grace_hopper_227.png"));
- ASSERT_TRUE(!sample.empty());
- Mat input;
- resize(sample, input, Size(224, 224));
- input -= Scalar::all(117); // mean sub
- Mat inputBlob = blobFromImage(input);
- net.setInput(inputBlob, "input");
- Mat out = net.forward("softmax2");
- std::cout << out.dims << std::endl;
- }
- TEST(Test_TensorFlow, inception_accuracy)
- {
- Net net;
- {
- const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
- net = readNetFromTensorflow(model);
- ASSERT_FALSE(net.empty());
- }
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- Mat sample = imread(_tf("grace_hopper_227.png"));
- ASSERT_TRUE(!sample.empty());
- Mat inputBlob = blobFromImage(sample, 1.0, Size(224, 224), Scalar(), /*swapRB*/true);
- net.setInput(inputBlob, "input");
- Mat out = net.forward("softmax2");
- Mat ref = blobFromNPY(_tf("tf_inception_prob.npy"));
- normAssert(ref, out);
- }
- static std::string path(const std::string& file)
- {
- return findDataFile("dnn/tensorflow/" + file);
- }
- class Test_TensorFlow_layers : public DNNTestLayer
- {
- public:
- void runTensorFlowNet(const std::string& prefix, bool hasText = false,
- double l1 = 0.0, double lInf = 0.0, bool memoryLoad = false, const std::string& groupPrefix = "")
- {
- if (cvtest::debugLevel > 0)
- {
- std::cout << prefix << groupPrefix << std::endl;
- }
- std::string netPath = path(prefix + groupPrefix + "_net.pb");
- std::string netConfig = (hasText ? path(prefix + groupPrefix + "_net.pbtxt") : "");
- std::string inpPath = path(prefix + "_in.npy");
- std::string outPath = path(prefix + groupPrefix + "_out.npy");
- cv::Mat input = blobFromNPY(inpPath);
- cv::Mat ref = blobFromNPY(outPath);
- checkBackend(&input, &ref);
- Net net;
- if (memoryLoad)
- {
- // Load files into a memory buffers
- std::vector<char> dataModel;
- readFileContent(netPath, dataModel);
- std::vector<char> dataConfig;
- if (hasText)
- {
- readFileContent(netConfig, dataConfig);
- }
- net = readNetFromTensorflow(dataModel.data(), dataModel.size(),
- dataConfig.data(), dataConfig.size());
- }
- else
- net = readNetFromTensorflow(netPath, netConfig);
- ASSERT_FALSE(net.empty());
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- net.setInput(input);
- cv::Mat output = net.forward();
- normAssert(ref, output, "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf);
- if (cvtest::debugLevel > 0 || HasFailure())
- {
- std::cout << "input: " << input.size << std::endl;
- std::cout << input.reshape(1, 1) << std::endl;
- std::cout << "ref " << ref.size << std::endl;
- std::cout << ref.reshape(1, 1) << std::endl;
- std::cout << "output: " << output.size << std::endl;
- std::cout << output.reshape(1, 1) << std::endl;
- }
- }
- };
- TEST_P(Test_TensorFlow_layers, reduce_mean)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- runTensorFlowNet("global_pool_by_axis");
- }
- TEST_P(Test_TensorFlow_layers, reduce_max)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- runTensorFlowNet("max_pool_by_axis", false, 0.0f, 0.0f);
- }
- TEST_P(Test_TensorFlow_layers, reduce_sum)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- runTensorFlowNet("sum_pool_by_axis");
- }
- TEST_P(Test_TensorFlow_layers, reduce_max_channel)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) // incorrect result
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- runTensorFlowNet("reduce_max_channel", false, 0.0f, 0.0f);
- }
- TEST_P(Test_TensorFlow_layers, reduce_sum_channel)
- {
- runTensorFlowNet("reduce_sum_channel");
- }
- TEST_P(Test_TensorFlow_layers, reduce_max_channel_keep_dims)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) // incorrect result
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- runTensorFlowNet("reduce_max_channel", false, 0.0, 0.0, false, "_keep_dims");
- }
- TEST_P(Test_TensorFlow_layers, reduce_sum_channel_keep_dims)
- {
- runTensorFlowNet("reduce_sum_channel", false, 0.0, 0.0, false, "_keep_dims");
- }
- TEST_P(Test_TensorFlow_layers, ArgLayer)
- {
- if (backend != DNN_BACKEND_OPENCV || target != DNN_TARGET_CPU)
- throw SkipTestException("Only CPU is supported"); // FIXIT use tags
- runTensorFlowNet("argmax");
- runTensorFlowNet("argmin");
- }
- TEST_P(Test_TensorFlow_layers, conv_single_conv)
- {
- runTensorFlowNet("single_conv");
- }
- TEST_P(Test_TensorFlow_layers, conv_atrous_conv2d_valid)
- {
- runTensorFlowNet("atrous_conv2d_valid");
- }
- TEST_P(Test_TensorFlow_layers, conv_atrous_conv2d_same)
- {
- runTensorFlowNet("atrous_conv2d_same");
- }
- TEST_P(Test_TensorFlow_layers, conv_depthwise_conv2d)
- {
- runTensorFlowNet("depthwise_conv2d");
- }
- TEST_P(Test_TensorFlow_layers, conv_keras_atrous_conv2d_same)
- {
- runTensorFlowNet("keras_atrous_conv2d_same");
- }
- TEST_P(Test_TensorFlow_layers, conv_pool_nchw)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- runTensorFlowNet("conv_pool_nchw");
- }
- TEST_P(Test_TensorFlow_layers, Convolution3D)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported
- #endif
- runTensorFlowNet("conv3d");
- }
- TEST_P(Test_TensorFlow_layers, padding)
- {
- runTensorFlowNet("padding_valid");
- runTensorFlowNet("spatial_padding");
- runTensorFlowNet("mirror_pad");
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019020000) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (target == DNN_TARGET_MYRIAD)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- }
- #endif
- runTensorFlowNet("keras_pad_concat");
- }
- TEST_P(Test_TensorFlow_layers, padding_asymmetric_1)
- {
- runTensorFlowNet("conv2d_asymmetric_pads_nchw");
- }
- TEST_P(Test_TensorFlow_layers, padding_asymmetric_2)
- {
- runTensorFlowNet("conv2d_asymmetric_pads_nhwc");
- }
- TEST_P(Test_TensorFlow_layers, padding_asymmetric_3)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU) // Exception: Unsupported pad value
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) // Exception: Unsupported pad value
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- runTensorFlowNet("max_pool2d_asymmetric_pads_nchw");
- }
- TEST_P(Test_TensorFlow_layers, padding_asymmetric_4)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU) // Exception: Unsupported pad value
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) // Exception: Unsupported pad value
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- runTensorFlowNet("max_pool2d_asymmetric_pads_nhwc");
- }
- TEST_P(Test_TensorFlow_layers, padding_asymmetric_5)
- {
- runTensorFlowNet("conv2d_backprop_input_asymmetric_pads_nchw");
- }
- TEST_P(Test_TensorFlow_layers, padding_asymmetric_6)
- {
- runTensorFlowNet("conv2d_backprop_input_asymmetric_pads_nhwc");
- }
- TEST_P(Test_TensorFlow_layers, padding_same)
- {
- // Reference output values are in range [0.0006, 2.798]
- runTensorFlowNet("padding_same");
- }
- TEST_P(Test_TensorFlow_layers, eltwise)
- {
- runTensorFlowNet("eltwise_add_mul");
- runTensorFlowNet("eltwise_sub");
- }
- TEST_P(Test_TensorFlow_layers, eltwise_add_vec)
- {
- runTensorFlowNet("eltwise_add_vec");
- }
- TEST_P(Test_TensorFlow_layers, eltwise_mul_vec)
- {
- runTensorFlowNet("eltwise_mul_vec");
- }
- TEST_P(Test_TensorFlow_layers, channel_broadcast)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- runTensorFlowNet("channel_broadcast");
- }
- TEST_P(Test_TensorFlow_layers, pad_and_concat)
- {
- runTensorFlowNet("pad_and_concat");
- }
- TEST_P(Test_TensorFlow_layers, concat_axis_1)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- // IE Exception: Ngraph operation Transpose with name Flatten_1/flatten/Reshape/nhwc has dynamic output shape on 0 port, but CPU plug-in supports only static shape
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
- CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
- );
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception
- #endif
- runTensorFlowNet("concat_axis_1");
- }
- TEST_P(Test_TensorFlow_layers, concat_3d)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU)
- {
- if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
- if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL);
- }
- if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ||
- backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- #endif
- runTensorFlowNet("concat_3d");
- }
- TEST_P(Test_TensorFlow_layers, batch_norm_1)
- {
- runTensorFlowNet("batch_norm");
- }
- TEST_P(Test_TensorFlow_layers, batch_norm_2)
- {
- runTensorFlowNet("batch_norm", false, 0.0, 0.0, true);
- }
- TEST_P(Test_TensorFlow_layers, batch_norm_3)
- {
- runTensorFlowNet("fused_batch_norm");
- }
- TEST_P(Test_TensorFlow_layers, batch_norm_4)
- {
- runTensorFlowNet("fused_batch_norm", false, 0.0, 0.0, true);
- }
- TEST_P(Test_TensorFlow_layers, batch_norm_5)
- {
- runTensorFlowNet("batch_norm_text", true);
- }
- TEST_P(Test_TensorFlow_layers, batch_norm_6)
- {
- runTensorFlowNet("batch_norm_text", true, 0.0, 0.0, true);
- }
- TEST_P(Test_TensorFlow_layers, batch_norm_7)
- {
- runTensorFlowNet("unfused_batch_norm");
- }
- TEST_P(Test_TensorFlow_layers, batch_norm_8)
- {
- runTensorFlowNet("fused_batch_norm_no_gamma");
- }
- TEST_P(Test_TensorFlow_layers, batch_norm_9)
- {
- runTensorFlowNet("unfused_batch_norm_no_gamma");
- }
- TEST_P(Test_TensorFlow_layers, batch_norm_10)
- {
- runTensorFlowNet("mvn_batch_norm");
- }
- TEST_P(Test_TensorFlow_layers, batch_norm_11)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // nan
- #endif
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- runTensorFlowNet("mvn_batch_norm_1x1");
- }
- TEST_P(Test_TensorFlow_layers, batch_norm_12)
- {
- runTensorFlowNet("switch_identity");
- }
- TEST_P(Test_TensorFlow_layers, batch_norm_13)
- {
- runTensorFlowNet("keras_batch_norm_training");
- }
- TEST_P(Test_TensorFlow_layers, batch_norm3D)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
- {
- if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- throw SkipTestException("");
- }
- runTensorFlowNet("batch_norm3d");
- }
- TEST_P(Test_TensorFlow_layers, slim_batch_norm)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- #endif
- // Output values range: [-40.0597, 207.827]
- double l1 = default_l1;
- double lInf = default_lInf;
- if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
- {
- l1 = 0.041;
- lInf = 0.33;
- }
- #if defined(INF_ENGINE_RELEASE)
- else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU)
- {
- lInf = 0.0002;
- }
- #endif
- else if (target == DNN_TARGET_CUDA_FP16)
- {
- l1 = 0.005;
- lInf = 0.33;
- }
- runTensorFlowNet("slim_batch_norm", false, l1, lInf);
- }
- TEST_P(Test_TensorFlow_layers, pooling_max_pool_even)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- runTensorFlowNet("max_pool_even");
- }
- TEST_P(Test_TensorFlow_layers, pooling_max_pool_odd_valid)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- runTensorFlowNet("max_pool_odd_valid");
- }
- TEST_P(Test_TensorFlow_layers, pooling_max_pool_odd_same)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- runTensorFlowNet("max_pool_odd_same");
- }
- TEST_P(Test_TensorFlow_layers, pooling_reduce_mean)
- {
- runTensorFlowNet("reduce_mean"); // an average pooling over all spatial dimensions.
- }
- TEST_P(Test_TensorFlow_layers, pooling_reduce_max)
- {
- runTensorFlowNet("reduce_max"); // a MAX pooling over all spatial dimensions.
- }
- TEST_P(Test_TensorFlow_layers, pooling_reduce_sum)
- {
- runTensorFlowNet("reduce_sum"); // a SUM pooling over all spatial dimensions.
- }
- TEST_P(Test_TensorFlow_layers, pooling_reduce_sum_0_false)
- {
- runTensorFlowNet("reduce_sum_0_False");
- }
- TEST_P(Test_TensorFlow_layers, pooling_reduce_sum_1_false)
- {
- runTensorFlowNet("reduce_sum_1_False");
- }
- TEST_P(Test_TensorFlow_layers, pooling_reduce_sum_2_false)
- {
- runTensorFlowNet("reduce_sum_2_False");
- }
- TEST_P(Test_TensorFlow_layers, pooling_reduce_sum_3_false)
- {
- runTensorFlowNet("reduce_sum_3_False");
- }
- TEST_P(Test_TensorFlow_layers, pooling_reduce_sum_1_2_false)
- {
- #if defined(INF_ENGINE_RELEASE)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- {
- default_l1 = 0.01f;
- }
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- {
- default_l1 = 0.01f;
- }
- #endif
- runTensorFlowNet("reduce_sum_1_2_False");
- }
- TEST_P(Test_TensorFlow_layers, pooling_reduce_sum_0_true)
- {
- runTensorFlowNet("reduce_sum_0_True");
- }
- TEST_P(Test_TensorFlow_layers, pooling_reduce_sum_1_true)
- {
- runTensorFlowNet("reduce_sum_1_True");
- }
- TEST_P(Test_TensorFlow_layers, pooling_reduce_sum_2_true)
- {
- runTensorFlowNet("reduce_sum_2_True");
- }
- TEST_P(Test_TensorFlow_layers, pooling_reduce_sum_3_true)
- {
- runTensorFlowNet("reduce_sum_3_True");
- }
- TEST_P(Test_TensorFlow_layers, pooling_reduce_sum_1_2_true)
- {
- #if defined(INF_ENGINE_RELEASE)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- {
- default_l1 = 0.01f;
- }
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- {
- default_l1 = 0.01f;
- }
- #endif
- runTensorFlowNet("reduce_sum_1_2_True");
- }
- TEST_P(Test_TensorFlow_layers, max_pool_grad)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- runTensorFlowNet("max_pool_grad");
- }
- // TODO: fix tests and replace to pooling
- TEST_P(Test_TensorFlow_layers, ave_pool_same)
- {
- // Reference output values are in range [-0.519531, 0.112976]
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- }
- #endif
- runTensorFlowNet("ave_pool_same");
- }
- TEST_P(Test_TensorFlow_layers, MaxPooling3D)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- {
- // accuracy
- if (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
- CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
- );
- // IE exception: [ GENERAL_ERROR ] AssertionFailed: !expired()
- if (target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- }
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported
- else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported
- #endif
- if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU)
- throw SkipTestException("Only CPU is supported"); // FIXIT use tags
- if (backend == DNN_BACKEND_VKCOM)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN);
- runTensorFlowNet("max_pool3d");
- }
- TEST_P(Test_TensorFlow_layers, AvePooling3D)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); // Only CPU on DLIE backend is supported
- else if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Only CPU on DLIE backend is supported
- #endif
- if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU)
- throw SkipTestException("Only CPU is supported"); // FIXIT use tags
- if (backend == DNN_BACKEND_VKCOM)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN);
- runTensorFlowNet("ave_pool3d");
- }
- TEST_P(Test_TensorFlow_layers, deconvolution)
- {
- if (backend == DNN_BACKEND_CUDA)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
- runTensorFlowNet("deconvolution");
- runTensorFlowNet("deconvolution_same");
- runTensorFlowNet("deconvolution_stride_2_same");
- runTensorFlowNet("deconvolution_adj_pad_valid");
- runTensorFlowNet("deconvolution_adj_pad_same");
- runTensorFlowNet("keras_deconv_valid");
- runTensorFlowNet("keras_deconv_same");
- runTensorFlowNet("keras_deconv_same_v2");
- }
- TEST_P(Test_TensorFlow_layers, matmul)
- {
- if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- runTensorFlowNet("matmul");
- runTensorFlowNet("nhwc_transpose_reshape_matmul");
- // Reference output values are in range [-5.688, 4.484]
- double l1 = target == DNN_TARGET_MYRIAD ? 6.1e-3 : default_l1;
- runTensorFlowNet("nhwc_reshape_matmul", false, l1);
- runTensorFlowNet("matmul_layout");
- runTensorFlowNet("two_inputs_matmul");
- }
- TEST_P(Test_TensorFlow_layers, batch_matmul)
- {
- if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- runTensorFlowNet("batch_matmul");
- }
- TEST_P(Test_TensorFlow_layers, square)
- {
- if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- runTensorFlowNet("square");
- }
- TEST_P(Test_TensorFlow_layers, reshape)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- #endif
- runTensorFlowNet("shift_reshape_no_reorder");
- runTensorFlowNet("reshape_no_reorder");
- runTensorFlowNet("reshape_reduce");
- runTensorFlowNet("reshape_as_shape");
- }
- TEST_P(Test_TensorFlow_layers, flatten)
- {
- #if defined(INF_ENGINE_RELEASE)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
- && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2
- )
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- #endif
- runTensorFlowNet("flatten", true);
- }
- TEST_P(Test_TensorFlow_layers, unfused_flatten)
- {
- runTensorFlowNet("unfused_flatten");
- runTensorFlowNet("unfused_flatten_unknown_batch");
- }
- TEST_P(Test_TensorFlow_layers, reshape_layer)
- {
- runTensorFlowNet("reshape_layer");
- }
- TEST_P(Test_TensorFlow_layers, reshape_nchw)
- {
- runTensorFlowNet("reshape_nchw");
- }
- TEST_P(Test_TensorFlow_layers, reshape_conv)
- {
- runTensorFlowNet("reshape_conv");
- }
- TEST_P(Test_TensorFlow_layers, leaky_relu)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- runTensorFlowNet("leaky_relu");
- runTensorFlowNet("leaky_relu_order1");
- runTensorFlowNet("leaky_relu_order2");
- runTensorFlowNet("leaky_relu_order3");
- }
- TEST_P(Test_TensorFlow_layers, l2_normalize)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
- && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
- )
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- runTensorFlowNet("l2_normalize");
- }
- TEST_P(Test_TensorFlow_layers, BiasAdd)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
- && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
- )
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- runTensorFlowNet("bias_add_1");
- }
- TEST_P(Test_TensorFlow_layers, ExpandDims)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // Layout::ANY is broken on CPU
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
- && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
- )
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- runTensorFlowNet("expand_dims_1");
- runTensorFlowNet("expand_dims_2");
- }
- // TODO: fix it and add to l2_normalize
- TEST_P(Test_TensorFlow_layers, l2_normalize_3d)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019
- && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)
- )
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
- CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #if defined(INF_ENGINE_RELEASE)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- #endif
- runTensorFlowNet("l2_normalize_3d");
- }
- class Test_TensorFlow_diagnostics : public DNNTestLayer {
- public:
- Test_TensorFlow_diagnostics()
- {
- enableModelDiagnostics(true);
- skipModelImport(true);
- }
- ~Test_TensorFlow_diagnostics()
- {
- enableModelDiagnostics(false);
- skipModelImport(false);
- }
- void runFailingTensorFlowNet(const std::string& prefix, bool hasText = false)
- {
- std::string netPath = path(prefix + "_net.pb");
- std::string netConfig = (hasText ? path(prefix + "_net.pbtxt") : "");
- Net net = readNetFromTensorflow(netPath, netConfig);
- }
- };
- TEST_P(Test_TensorFlow_diagnostics, not_implemented_layer)
- {
- runFailingTensorFlowNet("not_implemented_layer");
- }
- TEST_P(Test_TensorFlow_diagnostics, broken_parameters)
- {
- runFailingTensorFlowNet("broken_layer");
- }
- INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_diagnostics, dnnBackendsAndTargets());
- class Test_TensorFlow_nets : public DNNTestLayer {};
- TEST_P(Test_TensorFlow_nets, MobileNet_SSD)
- {
- #if defined(INF_ENGINE_RELEASE)
- if (target == DNN_TARGET_MYRIAD)
- {
- #if INF_ENGINE_VER_MAJOR_GE(2019020000)
- if (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X,
- backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ?
- CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER :
- CV_TEST_TAG_DNN_SKIP_IE_NGRAPH,
- CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- }
- #endif
- checkBackend();
- std::string imgPath = findDataFile("dnn/street.png");
- std::string netConfig = findDataFile("dnn/ssd_mobilenet_v1_coco.pbtxt");
- std::string netPath = findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false);
- Mat inp;
- resize(imread(imgPath), inp, Size(300, 300));
- inp = blobFromImage(inp, 1.0f / 127.5, Size(), Scalar(127.5, 127.5, 127.5), true);
- Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco.detection_out.npy"));
- Net net = readNetFromTensorflow(netPath, netConfig);
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- net.setInput(inp);
- Mat out = net.forward();
- double scoreDiff = default_l1, iouDiff = default_lInf;
- if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
- {
- scoreDiff = 0.01;
- iouDiff = 0.1;
- }
- else if (target == DNN_TARGET_CUDA_FP16)
- {
- iouDiff = 0.04;
- }
- normAssertDetections(ref, out, "", 0.2, scoreDiff, iouDiff);
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE >= 2019010000
- expectNoFallbacksFromIE(net);
- #endif
- }
- TEST_P(Test_TensorFlow_nets, Inception_v2_SSD)
- {
- applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2019010000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD &&
- getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- checkBackend();
- Mat img = imread(findDataFile("dnn/street.png"));
- std::string proto = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pbtxt");
- std::string model = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pb", false);
- Net net = readNetFromTensorflow(model, proto);
- Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false);
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- net.setInput(blob);
- // Output has shape 1x1xNx7 where N - number of detections.
- // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
- Mat out = net.forward();
- Mat ref = (Mat_<float>(5, 7) << 0, 1, 0.90176028, 0.19872092, 0.36311883, 0.26461923, 0.63498729,
- 0, 3, 0.93569964, 0.64865261, 0.45906419, 0.80675775, 0.65708131,
- 0, 3, 0.75838411, 0.44668293, 0.45907149, 0.49459291, 0.52197015,
- 0, 10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527,
- 0, 10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384);
- double scoreDiff = default_l1, iouDiff = default_lInf;
- if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
- {
- scoreDiff = 0.0097;
- iouDiff = 0.09;
- }
- else if (target == DNN_TARGET_CUDA_FP16)
- {
- scoreDiff = 6e-3;
- iouDiff = 0.05;
- }
- normAssertDetections(ref, out, "", 0.5, scoreDiff, iouDiff);
- expectNoFallbacksFromIE(net);
- }
- TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD)
- {
- checkBackend();
- std::string proto = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt");
- std::string model = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", false);
- Net net = readNetFromTensorflow(model, proto);
- Mat img = imread(findDataFile("dnn/dog416.png"));
- Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false);
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- net.setInput(blob);
- Mat out = net.forward();
- Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco_2017_11_17.detection_out.npy"));
- float scoreDiff = 1.5e-5, iouDiff = 1e-3;
- float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.35 : 0.3;
- if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
- {
- scoreDiff = 0.011;
- iouDiff = 0.012;
- }
- else if (target == DNN_TARGET_CUDA_FP16)
- {
- scoreDiff = 0.006;
- iouDiff = 0.01;
- }
- #if defined(INF_ENGINE_RELEASE)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD &&
- getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
- {
- scoreDiff = 0.061;
- iouDiff = 0.12;
- detectionConfThresh = 0.36;
- }
- #endif
- normAssertDetections(ref, out, "", detectionConfThresh, scoreDiff, iouDiff);
- expectNoFallbacksFromIE(net);
- }
- TEST_P(Test_TensorFlow_nets, Faster_RCNN_inception_v2_coco_2018_01_28)
- {
- applyTestTag(
- (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB),
- CV_TEST_TAG_LONG,
- CV_TEST_TAG_DEBUG_VERYLONG
- );
- #ifdef INF_ENGINE_RELEASE
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 &&
- (INF_ENGINE_VER_MAJOR_LT(2019020000) || target != DNN_TARGET_CPU))
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- if (INF_ENGINE_VER_MAJOR_GT(2019030000) &&
- backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- // segfault: inference-engine/thirdparty/clDNN/src/gpu/detection_output_cpu.cpp:111:
- // Assertion `prior_height > 0' failed.
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- #endif
- if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
- checkBackend();
- double scoresDiff = 1e-5;
- double iouDiff = 1e-4;
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- {
- scoresDiff = 0.02;
- iouDiff = 0.1;
- }
- std::string name = "faster_rcnn_inception_v2_coco_2018_01_28";
- {
- std::string proto = findDataFile("dnn/" + name + ".pbtxt");
- std::string model = findDataFile("dnn/" + name + ".pb", false);
- Net net = readNetFromTensorflow(model, proto);
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- Mat img = imread(findDataFile("dnn/dog416.png"));
- Mat blob = blobFromImage(img, 1.0f, Size(800, 600), Scalar(), true, false);
- net.setInput(blob);
- Mat out = net.forward();
- Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/" + name + ".detection_out.npy"));
- // accuracy (both OpenCV & IE)
- if (target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- normAssertDetections(ref, out, name.c_str(), 0.3, scoresDiff, iouDiff);
- }
- }
- TEST_P(Test_TensorFlow_nets, Faster_RCNN_resnet50_coco_2018_01_28)
- {
- applyTestTag(
- (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB),
- CV_TEST_TAG_LONG,
- CV_TEST_TAG_DEBUG_VERYLONG
- );
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- // IE exception: Ngraph operation Transpose with name FirstStageBoxPredictor/ClassPredictor/reshape_1/nhwc has dynamic output shape on 0 port, but CPU plug-in supports only static shape
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
- CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
- );
- #endif
- #ifdef INF_ENGINE_RELEASE
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 &&
- (INF_ENGINE_VER_MAJOR_LT(2019020000) || target != DNN_TARGET_CPU))
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- if (INF_ENGINE_VER_MAJOR_GT(2019030000) &&
- backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- // segfault: inference-engine/thirdparty/clDNN/src/gpu/detection_output_cpu.cpp:111:
- // Assertion `prior_height > 0' failed.
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- #endif
- if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
- checkBackend();
- double scoresDiff = backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ? 2.9e-5 : 1e-5;
- double iouDiff = 1e-4;
- if (target == DNN_TARGET_CUDA)
- {
- scoresDiff = 0.06;
- iouDiff = 0.08;
- }
- std::string name = "faster_rcnn_resnet50_coco_2018_01_28";
- {
- std::string proto = findDataFile("dnn/" + name + ".pbtxt");
- std::string model = findDataFile("dnn/" + name + ".pb", false);
- Net net = readNetFromTensorflow(model, proto);
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- Mat img = imread(findDataFile("dnn/dog416.png"));
- Mat blob = blobFromImage(img, 1.0f, Size(800, 600), Scalar(), true, false);
- net.setInput(blob);
- Mat out = net.forward();
- Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/" + name + ".detection_out.npy"));
- // accuracy
- if (target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- normAssertDetections(ref, out, name.c_str(), 0.3, scoresDiff, iouDiff);
- }
- }
- TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD_PPN)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
- CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- checkBackend();
- std::string proto = findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pbtxt");
- std::string model = findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pb", false);
- Net net = readNetFromTensorflow(model, proto);
- Mat img = imread(findDataFile("dnn/dog416.png"));
- Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_ppn_coco.detection_out.npy"));
- Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false);
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- net.setInput(blob);
- Mat out = net.forward();
- double scoreDiff = 1.1e-5, iouDiff = default_lInf;
- if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
- {
- scoreDiff = 0.048;
- iouDiff = 0.058;
- }
- else if (target == DNN_TARGET_CUDA_FP16)
- {
- scoreDiff = 0.006;
- iouDiff = 0.05;
- }
- normAssertDetections(ref, out, "", 0.45, scoreDiff, iouDiff);
- expectNoFallbacksFromIE(net);
- }
- TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8)
- {
- checkBackend();
- std::string proto = findDataFile("dnn/opencv_face_detector.pbtxt");
- std::string model = findDataFile("dnn/opencv_face_detector_uint8.pb", false);
- Net net = readNetFromTensorflow(model, proto);
- Mat img = imread(findDataFile("gpu/lbpcascade/er.png"));
- Mat blob = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false);
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- net.setInput(blob);
- // Output has shape 1x1xNx7 where N - number of detections.
- // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
- Mat out = net.forward();
- // References are from test for Caffe model.
- Mat ref = (Mat_<float>(6, 7) << 0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631,
- 0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168,
- 0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290,
- 0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477,
- 0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494,
- 0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801);
- double scoreDiff = 3.4e-3, iouDiff = 1e-2;
- if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
- {
- scoreDiff = 4e-3;
- iouDiff = 0.024;
- }
- else if (target == DNN_TARGET_CUDA_FP16)
- {
- scoreDiff = 4e-3;
- iouDiff = 0.02;
- }
- normAssertDetections(ref, out, "", 0.9, scoreDiff, iouDiff);
- expectNoFallbacksFromIE(net);
- }
- // inp = cv.imread('opencv_extra/testdata/cv/ximgproc/sources/08.png')
- // inp = inp[:,:,[2, 1, 0]].astype(np.float32).reshape(1, 512, 512, 3)
- // outs = sess.run([sess.graph.get_tensor_by_name('feature_fusion/Conv_7/Sigmoid:0'),
- // sess.graph.get_tensor_by_name('feature_fusion/concat_3:0')],
- // feed_dict={'input_images:0': inp})
- // scores = np.ascontiguousarray(outs[0].transpose(0, 3, 1, 2))
- // geometry = np.ascontiguousarray(outs[1].transpose(0, 3, 1, 2))
- // np.save('east_text_detection.scores.npy', scores)
- // np.save('east_text_detection.geometry.npy', geometry)
- TEST_P(Test_TensorFlow_nets, EAST_text_detection)
- {
- applyTestTag(
- (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB),
- CV_TEST_TAG_DEBUG_LONG
- );
- #if defined(INF_ENGINE_RELEASE)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL_FP16 &&
- (INF_ENGINE_VER_MAJOR_EQ(2019020000) || INF_ENGINE_VER_MAJOR_GE(2020010000))
- )
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- checkBackend();
- std::string netPath = findDataFile("dnn/frozen_east_text_detection.pb", false);
- std::string imgPath = findDataFile("cv/ximgproc/sources/08.png");
- std::string refScoresPath = findDataFile("dnn/east_text_detection.scores.npy");
- std::string refGeometryPath = findDataFile("dnn/east_text_detection.geometry.npy");
- Net net = readNet(netPath);
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- Mat img = imread(imgPath);
- Mat inp = blobFromImage(img, 1.0, Size(), Scalar(123.68, 116.78, 103.94), true, false);
- net.setInput(inp);
- std::vector<Mat> outs;
- std::vector<String> outNames(2);
- outNames[0] = "feature_fusion/Conv_7/Sigmoid";
- outNames[1] = "feature_fusion/concat_3";
- net.forward(outs, outNames);
- Mat scores = outs[0];
- Mat geometry = outs[1];
- // Scores are in range [0, 1]. Geometry values are in range [-0.23, 290]
- double l1_scores = default_l1, lInf_scores = default_lInf;
- double l1_geometry = default_l1, lInf_geometry = default_lInf;
- if (target == DNN_TARGET_OPENCL_FP16)
- {
- lInf_scores = backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ? 0.16 : 0.11;
- l1_geometry = 0.28; lInf_geometry = 5.94;
- }
- else if (target == DNN_TARGET_MYRIAD)
- {
- lInf_scores = 0.41;
- l1_geometry = 0.28; lInf_geometry = 5.94;
- }
- else if (target == DNN_TARGET_CUDA_FP16)
- {
- lInf_scores = 0.1;
- l1_geometry = 0.3; lInf_geometry = 7;
- }
- else
- {
- l1_geometry = 1e-4, lInf_geometry = 3e-3;
- }
- normAssert(scores, blobFromNPY(refScoresPath), "scores", l1_scores, lInf_scores);
- normAssert(geometry, blobFromNPY(refGeometryPath), "geometry", l1_geometry, lInf_geometry);
- expectNoFallbacksFromIE(net);
- }
- INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_nets, dnnBackendsAndTargets());
- TEST_P(Test_TensorFlow_layers, fp16_weights_fp16_single_conv)
- {
- float l1 = 0.00078, lInf = 0.012;
- runTensorFlowNet("fp16_single_conv", false, l1, lInf);
- }
- TEST_P(Test_TensorFlow_layers, fp16_weights_fp16_max_pool_odd_same)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- float l1 = 0.00078, lInf = 0.012;
- runTensorFlowNet("fp16_max_pool_odd_same", false, l1, lInf);
- }
- TEST_P(Test_TensorFlow_layers, fp16_weights_fp16_eltwise_add_mul)
- {
- float l1 = 0.00078, lInf = 0.012;
- runTensorFlowNet("fp16_eltwise_add_mul", false, l1, lInf);
- }
- TEST_P(Test_TensorFlow_layers, fp16_weights_fp16_pad_and_concat)
- {
- float l1 = 0.00078, lInf = 0.012;
- runTensorFlowNet("fp16_pad_and_concat", false, l1, lInf);
- }
- TEST_P(Test_TensorFlow_layers, fp16_weights_fp16_padding_valid)
- {
- float l1 = 0.00078, lInf = 0.012;
- runTensorFlowNet("fp16_padding_valid", false, l1, lInf);
- }
- TEST_P(Test_TensorFlow_layers, fp16_weights_fp16_max_pool_even)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- float l1 = 0.00078, lInf = 0.012;
- // Reference output values are in range [0.0889, 1.651]
- runTensorFlowNet("fp16_max_pool_even", false, (target == DNN_TARGET_MYRIAD) ? 0.003 : l1, lInf);
- }
- TEST_P(Test_TensorFlow_layers, fp16_weights_fp16_deconvolution)
- {
- float l1 = 0.00078, lInf = 0.012;
- if (target == DNN_TARGET_MYRIAD) {
- l1 = 0.0041;
- lInf = 0.024;
- }
- // Reference output values are in range [0, 10.75]
- runTensorFlowNet("fp16_deconvolution", false, l1, lInf);
- }
- TEST_P(Test_TensorFlow_layers, fp16_weights_fp16_max_pool_odd_valid)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- float l1 = 0.00078, lInf = 0.012;
- if (target == DNN_TARGET_MYRIAD) {
- l1 = 0.0041;
- lInf = 0.024;
- }
- // Reference output values are in range [0.418, 2.297]
- runTensorFlowNet("fp16_max_pool_odd_valid", false, l1, lInf);
- }
- TEST_P(Test_TensorFlow_layers, fp16_padding_same)
- {
- // Reference output values are in range [-3.504, -0.002]
- runTensorFlowNet("fp16_padding_same", false, 7e-4, 4e-3);
- }
- TEST_P(Test_TensorFlow_layers, defun)
- {
- runTensorFlowNet("defun_dropout");
- }
- TEST_P(Test_TensorFlow_layers, quantized)
- {
- runTensorFlowNet("uint8_single_conv");
- }
- TEST_P(Test_TensorFlow_layers, lstm)
- {
- if(backend == DNN_BACKEND_CUDA)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); /* not supported */
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- {
- // Exception: Ngraph operation Reshape with name Reshape has dynamic output shape on 0 port, but CPU plug-in supports only static shape
- if (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
- CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
- );
- // Xlink
- if (target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- }
- #endif
- if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- runTensorFlowNet("lstm", true);
- runTensorFlowNet("lstm", true, 0.0, 0.0, true);
- }
- TEST_P(Test_TensorFlow_layers, split)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- runTensorFlowNet("split");
- }
- TEST_P(Test_TensorFlow_layers, split_equals)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- runTensorFlowNet("split_equals");
- }
- TEST_P(Test_TensorFlow_layers, resize_nearest_neighbor)
- {
- runTensorFlowNet("resize_nearest_neighbor");
- runTensorFlowNet("keras_upsampling2d");
- }
- TEST_P(Test_TensorFlow_layers, resize_nearest_neighbor_align_corners)
- {
- runTensorFlowNet("resize_nearest_neighbor", false, 0.0, 0.0, false, "_align_corners");
- }
- TEST_P(Test_TensorFlow_layers, resize_nearest_neighbor_half_pixel)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- #endif
- runTensorFlowNet("resize_nearest_neighbor", false, 0.0, 0.0, false, "_half_pixel");
- }
- TEST_P(Test_TensorFlow_layers, fused_resize_conv)
- {
- runTensorFlowNet("fused_resize_conv");
- }
- TEST_P(Test_TensorFlow_layers, slice)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 &&
- (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
- CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- double l1 = target == DNN_TARGET_MYRIAD ? 4.9e-3 : default_l1;
- runTensorFlowNet("crop2d", false, l1);
- runTensorFlowNet("slice_4d");
- runTensorFlowNet("strided_slice");
- }
- TEST_P(Test_TensorFlow_layers, softmax)
- {
- runTensorFlowNet("keras_softmax");
- runTensorFlowNet("slim_softmax");
- }
- TEST_P(Test_TensorFlow_layers, slim_softmax_v2)
- {
- #if defined(INF_ENGINE_RELEASE)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD &&
- getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2
- )
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- #endif
- runTensorFlowNet("slim_softmax_v2");
- }
- TEST_P(Test_TensorFlow_layers, relu6)
- {
- runTensorFlowNet("keras_relu6");
- runTensorFlowNet("keras_relu6", /*hasText*/ true);
- }
- TEST_P(Test_TensorFlow_layers, subpixel)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- runTensorFlowNet("subpixel");
- }
- TEST_P(Test_TensorFlow_layers, keras_mobilenet_head)
- {
- runTensorFlowNet("keras_mobilenet_head");
- runTensorFlowNet("keras_learning_phase");
- }
- // TF case: align_corners=False, half_pixel_centers=False
- TEST_P(Test_TensorFlow_layers, resize_bilinear)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception
- #endif
- runTensorFlowNet("resize_bilinear");
- }
- // TF case: align_corners=True, half_pixel_centers=False
- TEST_P(Test_TensorFlow_layers, resize_bilinear_align_corners)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception
- #endif
- runTensorFlowNet("resize_bilinear",
- false, 0.0, 0.0, false, // default parameters
- "_align_corners");
- }
- // TF case: align_corners=False, half_pixel_centers=True
- TEST_P(Test_TensorFlow_layers, resize_bilinear_half_pixel)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- runTensorFlowNet("resize_bilinear", false, 0.0, 0.0, false, "_half_pixel");
- }
- // TF case: align_corners=False, half_pixel_centers=False
- TEST_P(Test_TensorFlow_layers, resize_bilinear_factor)
- {
- runTensorFlowNet("resize_bilinear_factor");
- }
- // TF case: align_corners=False, half_pixel_centers=True
- TEST_P(Test_TensorFlow_layers, resize_bilinear_factor_half_pixel)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- runTensorFlowNet("resize_bilinear_factor", false, 0.0, 0.0, false, "_half_pixel");
- }
- // TF case: align_corners=True, half_pixel_centers=False
- TEST_P(Test_TensorFlow_layers, resize_bilinear_factor_align_corners)
- {
- runTensorFlowNet("resize_bilinear_factor", false, 0.0, 0.0, false, "_align_corners");
- }
- // TF case: align_corners=False, half_pixel_centers=False
- TEST_P(Test_TensorFlow_layers, resize_bilinear_down)
- {
- runTensorFlowNet("resize_bilinear_down");
- }
- TEST_P(Test_TensorFlow_layers, resize_concat_optimization)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU) // Exception: Function contains several inputs and outputs with one friendly name! (HETERO bug?)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- runTensorFlowNet("resize_concat_optimization");
- }
- TEST_P(Test_TensorFlow_layers, tf2_dense)
- {
- runTensorFlowNet("tf2_dense");
- }
- TEST_P(Test_TensorFlow_layers, clip_by_value)
- {
- runTensorFlowNet("clip_by_value");
- }
- TEST_P(Test_TensorFlow_layers, tf2_prelu)
- {
- if (backend == DNN_BACKEND_CUDA)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); // not supported; only across channels is supported
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- {
- // IE exception: Input prelu:StatefulPartitionedCall/StatefulPartitionedCall/sequential/p_re_lu/add hasn't been found in primitiveIDs map
- if (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
- CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
- );
- // IE exception: Eltwise node with name `StatefulPartitionedCall/StatefulPartitionedCall/sequential/p_re_lu/add` has invalid input/output dims configuration
- if (target == DNN_TARGET_CPU)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- }
- #endif
- runTensorFlowNet("tf2_prelu");
- }
- TEST_P(Test_TensorFlow_layers, tf2_permute_nhwc_ncwh)
- {
- runTensorFlowNet("tf2_permute_nhwc_ncwh");
- }
- TEST_P(Test_TensorFlow_layers, squeeze)
- {
- #if defined(INF_ENGINE_RELEASE)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
- && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2
- )
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- #endif
- int inpShapes[][4] = {{1, 3, 4, 2}, {1, 3, 1, 2}, {1, 3, 4, 1}, {1, 3, 4, 1}}; // TensorFlow's shape (NHWC)
- int outShapes[][3] = {{3, 4, 2}, {1, 3, 2}, {1, 3, 4}, {1, 3, 4}};
- int squeeze_dims[] = {0, 2, 3, -1};
- for (int i = 0; i < 4; ++i)
- {
- SCOPED_TRACE(format("i=%d", i));
- std::string pbtxt =
- "node { name: \"input\" op: \"Placeholder\""
- "attr { key: \"data_format\" value { s: \"NHWC\" } } }"
- "node { name: \"squeeze\" op: \"Squeeze\" input: \"input\""
- "attr { key: \"squeeze_dims\" value { list { i:" + format("%d", squeeze_dims[i]) + "}}}}";
- Net net = readNetFromTensorflow(0, 0, pbtxt.c_str(), pbtxt.size());
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- Mat tfInp(4, &inpShapes[i][0], CV_32F);
- randu(tfInp, -1, 1);
- // NHWC to NCHW
- CV_Assert(inpShapes[i][0] == 1);
- std::swap(inpShapes[i][2], inpShapes[i][3]);
- std::swap(inpShapes[i][1], inpShapes[i][2]);
- Mat cvInp = tfInp.reshape(1, tfInp.total() / inpShapes[i][1]).t();
- cvInp = cvInp.reshape(1, 4, &inpShapes[i][0]);
- net.setInput(cvInp);
- Mat out = net.forward();
- normAssert(tfInp.reshape(1, 3, &outShapes[i][0]), out, "", default_l1, default_lInf);
- }
- }
- INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_layers, dnnBackendsAndTargets());
- TEST(Test_TensorFlow, two_inputs)
- {
- Net net = readNet(path("two_inputs_net.pbtxt"));
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- Mat firstInput(2, 3, CV_32FC1), secondInput(2, 3, CV_32FC1);
- randu(firstInput, -1, 1);
- randu(secondInput, -1, 1);
- net.setInput(firstInput, "first_input");
- net.setInput(secondInput, "second_input");
- Mat out = net.forward();
- normAssert(out, firstInput + secondInput);
- }
- TEST_P(Test_TensorFlow_nets, Mask_RCNN)
- {
- static const double kMaskThreshold = 0.5;
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- if (target == DNN_TARGET_CUDA_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
- applyTestTag(CV_TEST_TAG_MEMORY_1GB, CV_TEST_TAG_DEBUG_VERYLONG);
- Mat img = imread(findDataFile("dnn/street.png"));
- std::string proto = findDataFile("dnn/mask_rcnn_inception_v2_coco_2018_01_28.pbtxt");
- std::string model = findDataFile("dnn/mask_rcnn_inception_v2_coco_2018_01_28.pb", false);
- Net net = readNetFromTensorflow(model, proto);
- Mat refDetections = blobFromNPY(path("mask_rcnn_inception_v2_coco_2018_01_28.detection_out.npy"));
- Mat refMasks = blobFromNPY(path("mask_rcnn_inception_v2_coco_2018_01_28.detection_masks.npy"));
- Mat blob = blobFromImage(img, 1.0f, Size(800, 800), Scalar(), true, false);
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- net.setInput(blob);
- // Mask-RCNN predicts bounding boxes and segmentation masks.
- std::vector<String> outNames(2);
- outNames[0] = "detection_out_final";
- outNames[1] = "detection_masks";
- std::vector<Mat> outs;
- net.forward(outs, outNames);
- Mat outDetections = outs[0];
- Mat outMasks = outs[1];
- double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.2 : 2e-5;
- double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.018 : default_lInf;
- normAssertDetections(refDetections, outDetections, "", /*threshold for zero confidence*/1e-5, scoreDiff, iouDiff);
- // Output size of masks is NxCxHxW where
- // N - number of detected boxes
- // C - number of classes (excluding background)
- // HxW - segmentation shape
- const int numDetections = outDetections.size[2];
- int masksSize[] = {1, numDetections, outMasks.size[2], outMasks.size[3]};
- Mat masks(4, &masksSize[0], CV_32F);
- std::vector<cv::Range> srcRanges(4, cv::Range::all());
- std::vector<cv::Range> dstRanges(4, cv::Range::all());
- outDetections = outDetections.reshape(1, outDetections.total() / 7);
- for (int i = 0; i < numDetections; ++i)
- {
- // Get a class id for this bounding box and copy mask only for that class.
- int classId = static_cast<int>(outDetections.at<float>(i, 1));
- srcRanges[0] = dstRanges[1] = cv::Range(i, i + 1);
- srcRanges[1] = cv::Range(classId, classId + 1);
- outMasks(srcRanges).copyTo(masks(dstRanges));
- }
- cv::Range topRefMasks[] = {Range::all(), Range(0, numDetections), Range::all(), Range::all()};
- refMasks = refMasks(&topRefMasks[0]);
- // make binary masks
- cv::threshold(masks.reshape(1, 1), masks, kMaskThreshold, 1, THRESH_BINARY);
- cv::threshold(refMasks.reshape(1, 1), refMasks, kMaskThreshold, 1, THRESH_BINARY);
- double inter = cv::countNonZero(masks & refMasks);
- double area = cv::countNonZero(masks | refMasks);
- EXPECT_GE(inter / area, (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.98 : 0.99);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- expectNoFallbacks(net);
- }
- TEST_P(Test_TensorFlow_nets, EfficientDet)
- {
- if (target != DNN_TARGET_CPU)
- {
- if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL);
- if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
- }
- checkBackend();
- std::string proto = findDataFile("dnn/efficientdet-d0.pbtxt");
- std::string model = findDataFile("dnn/efficientdet-d0.pb", false);
- Net net = readNetFromTensorflow(model, proto);
- Mat img = imread(findDataFile("dnn/dog416.png"));
- Mat blob = blobFromImage(img, 1.0/255, Size(512, 512), Scalar(123.675, 116.28, 103.53));
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- net.setInput(blob);
- // Output has shape 1x1xNx7 where N - number of detections.
- // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
- Mat out = net.forward();
- // References are from test for TensorFlow model.
- Mat ref = (Mat_<float>(3, 7) << 0, 1, 0.8437444, 0.153996080160141, 0.20534580945968628, 0.7463544607162476, 0.7414066195487976,
- 0, 17, 0.8245924, 0.16657517850399017, 0.3996818959712982, 0.4111558794975281, 0.9306337833404541,
- 0, 7, 0.8039304, 0.6118435263633728, 0.13175517320632935, 0.9065558314323425, 0.2943994700908661);
- double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 4e-3 : 1e-5;
- double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 2e-3 : 1e-4;
- if (target == DNN_TARGET_CUDA_FP16)
- {
- scoreDiff = 0.002;
- iouDiff = 0.005;
- }
- normAssertDetections(ref, out, "", 0.5, scoreDiff, iouDiff);
- expectNoFallbacksFromIE(net);
- }
- }
|