1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2017, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- #include <opencv2/core/ocl.hpp>
- #include "npy_blob.hpp"
- #include <opencv2/dnn/shape_utils.hpp>
- #include <opencv2/dnn/all_layers.hpp>
- #include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
- #ifdef HAVE_INF_ENGINE
- #include <thread>
- #endif
- namespace opencv_test { namespace {
- template<typename TString>
- static String _tf(TString filename)
- {
- String basetestdir = getOpenCVExtraDir();
- size_t len = basetestdir.size();
- if(len > 0 && basetestdir[len-1] != '/' && basetestdir[len-1] != '\\')
- return (basetestdir + "/dnn/layers") + filename;
- return (basetestdir + "dnn/layers/") + filename;
- }
- void runLayer(Ptr<Layer> layer, std::vector<Mat> &inpBlobs, std::vector<Mat> &outBlobs)
- {
- size_t ninputs = inpBlobs.size();
- std::vector<Mat> inp(ninputs), outp, intp;
- std::vector<MatShape> inputs, outputs, internals;
- for (size_t i = 0; i < ninputs; i++)
- {
- inp[i] = inpBlobs[i].clone();
- inputs.push_back(shape(inp[i]));
- }
- layer->getMemoryShapes(inputs, 0, outputs, internals);
- for (size_t i = 0; i < outputs.size(); i++)
- {
- outp.push_back(Mat(outputs[i], CV_32F));
- }
- for (size_t i = 0; i < internals.size(); i++)
- {
- intp.push_back(Mat(internals[i], CV_32F));
- }
- layer->finalize(inp, outp);
- layer->forward(inp, outp, intp);
- size_t noutputs = outp.size();
- outBlobs.resize(noutputs);
- for (size_t i = 0; i < noutputs; i++)
- outBlobs[i] = outp[i];
- }
- class Test_Caffe_layers : public DNNTestLayer
- {
- public:
- void testLayerUsingCaffeModels(const String& basename, bool useCaffeModel = false,
- bool useCommonInputBlob = true, double l1 = 0.0, double lInf = 0.0,
- int numInps = 1, int numOuts = 1)
- {
- CV_Assert_N(numInps >= 1, numInps <= 10, numOuts >= 1, numOuts <= 10);
- String prototxt = _tf(basename + ".prototxt");
- String caffemodel = _tf(basename + ".caffemodel");
- std::vector<Mat> inps, refs, outs;
- if (numInps > 1)
- {
- for (int i = 0; i < numInps; i++)
- {
- String inpfile = _tf(basename + cv::format(".input_%d.npy", i));
- inps.push_back(blobFromNPY(inpfile));
- }
- }
- else
- {
- String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy");
- inps.push_back(blobFromNPY(inpfile));
- }
- if (numOuts > 1)
- {
- for (int i = 0; i < numOuts; i++)
- {
- String outfile = _tf(basename + cv::format("_%d.npy", i));
- refs.push_back(blobFromNPY(outfile));
- }
- }
- else
- {
- String outfile = _tf(basename + ".npy");
- refs.push_back(blobFromNPY(outfile));
- }
- Net net = readNetFromCaffe(prototxt, (useCaffeModel) ? caffemodel : String());
- ASSERT_FALSE(net.empty());
- checkBackend(&inps[0], &refs[0]);
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- String inp_name = "input";
- if (numInps > 1)
- {
- for (int i = 0; i < numInps; i++)
- {
- net.setInput(inps[i], inp_name + cv::format("_%d", i));
- }
- }
- else
- {
- net.setInput(inps.back(), inp_name);
- }
- net.forward(outs);
- for (int i = 0; i < refs.size(); i++)
- {
- normAssert(refs[i], outs[i], "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf);
- }
- }
- };
- TEST_P(Test_Caffe_layers, Softmax)
- {
- testLayerUsingCaffeModels("layer_softmax");
- }
- TEST_P(Test_Caffe_layers, LRN)
- {
- double l1 = 0.0, lInf = 0.0;
- // The OpenCL kernels use the native_ math functions which have
- // implementation defined accuracy, so we use relaxed thresholds. See
- // https://github.com/opencv/opencv/issues/9821 for more details.
- if (target == DNN_TARGET_OPENCL)
- {
- l1 = 0.01;
- lInf = 0.01;
- }
- testLayerUsingCaffeModels("layer_lrn_spatial", false, true, l1, lInf);
- testLayerUsingCaffeModels("layer_lrn_channels", false, true, l1, lInf);
- }
- TEST_P(Test_Caffe_layers, Convolution)
- {
- testLayerUsingCaffeModels("layer_convolution", true);
- }
- TEST_P(Test_Caffe_layers, DeConvolution)
- {
- if(target == DNN_TARGET_CUDA_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
- testLayerUsingCaffeModels("layer_deconvolution", true, false);
- }
- TEST_P(Test_Caffe_layers, InnerProduct)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- // IE exception: Ngraph operation Reshape with name Reshape_4219609 has dynamic output shape on 0 port, but CPU plug-in supports only static shape
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
- CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
- );
- #endif
- if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- testLayerUsingCaffeModels("layer_inner_product", true);
- }
- TEST_P(Test_Caffe_layers, Pooling_max)
- {
- testLayerUsingCaffeModels("layer_pooling_max");
- }
- TEST_P(Test_Caffe_layers, Pooling_ave)
- {
- testLayerUsingCaffeModels("layer_pooling_ave");
- }
- TEST_P(Test_Caffe_layers, MVN)
- {
- if(backend == DNN_BACKEND_CUDA)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); /* MVN is unsupported */
- testLayerUsingCaffeModels("layer_mvn");
- }
- void testReshape(const MatShape& inputShape, const MatShape& targetShape,
- int axis = 0, int num_axes = -1,
- MatShape mask = MatShape())
- {
- LayerParams params;
- params.set("axis", axis);
- params.set("num_axes", num_axes);
- if (!mask.empty())
- {
- params.set("dim", DictValue::arrayInt<int*>(&mask[0], mask.size()));
- }
- Mat inp(inputShape.size(), &inputShape[0], CV_32F);
- std::vector<Mat> inpVec(1, inp);
- std::vector<Mat> outVec, intVec;
- Ptr<Layer> rl = LayerFactory::createLayerInstance("Reshape", params);
- runLayer(rl, inpVec, outVec);
- Mat& out = outVec[0];
- MatShape shape(out.size.p, out.size.p + out.dims);
- EXPECT_EQ(shape, targetShape);
- }
- TEST(Layer_Test_Reshape, Accuracy)
- {
- {
- int inp[] = {4, 3, 1, 2};
- int out[] = {4, 3, 2};
- testReshape(MatShape(inp, inp + 4), MatShape(out, out + 3), 2, 1);
- }
- {
- int inp[] = {1, 128, 4, 4};
- int out[] = {1, 2048};
- int mask[] = {-1, 2048};
- testReshape(MatShape(inp, inp + 4), MatShape(out, out + 2), 0, -1,
- MatShape(mask, mask + 2));
- }
- {
- int inp[] = {1, 2, 3};
- int out[] = {3, 1, 2};
- int mask[] = {3, 1, 2};
- testReshape(MatShape(inp, inp + 3), MatShape(out, out + 3), 0, -1,
- MatShape(mask, mask + 3));
- }
- }
- TEST_P(Test_Caffe_layers, BatchNorm)
- {
- testLayerUsingCaffeModels("layer_batch_norm", true);
- testLayerUsingCaffeModels("layer_batch_norm_local_stats", true, false);
- }
- TEST_P(Test_Caffe_layers, ReLU)
- {
- testLayerUsingCaffeModels("layer_relu");
- }
- TEST_P(Test_Caffe_layers, Dropout)
- {
- testLayerUsingCaffeModels("layer_dropout");
- }
- TEST_P(Test_Caffe_layers, Concat)
- {
- #if defined(INF_ENGINE_RELEASE)
- #if INF_ENGINE_VER_MAJOR_GE(2019010000) && INF_ENGINE_VER_MAJOR_LT(2019020000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #elif INF_ENGINE_VER_MAJOR_EQ(2019020000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 &&
- (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
- CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #if INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH &&
- (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
- CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #endif
- testLayerUsingCaffeModels("layer_concat");
- testLayerUsingCaffeModels("layer_concat_optim", true, false);
- testLayerUsingCaffeModels("layer_concat_shared_input", true, false);
- }
- TEST_P(Test_Caffe_layers, Fused_Concat)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
- CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- checkBackend();
- // Test case
- // input
- // |
- // v
- // some_layer
- // | |
- // v v
- // concat
- Net net;
- int interLayer;
- {
- LayerParams lp;
- lp.type = "AbsVal";
- lp.name = "someLayer";
- interLayer = net.addLayerToPrev(lp.name, lp.type, lp);
- }
- {
- LayerParams lp;
- lp.set("axis", 1);
- lp.type = "Concat";
- lp.name = "testConcat";
- int id = net.addLayer(lp.name, lp.type, lp);
- net.connect(interLayer, 0, id, 0);
- net.connect(interLayer, 0, id, 1);
- }
- int shape[] = {1, 2, 3, 4};
- Mat input(4, shape, CV_32F);
- randu(input, 0.0f, 1.0f); // [0, 1] to make AbsVal an identity transformation.
- net.setInput(input);
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- Mat out = net.forward();
- normAssert(slice(out, Range::all(), Range(0, 2), Range::all(), Range::all()), input, "", default_l1, default_lInf);
- normAssert(slice(out, Range::all(), Range(2, 4), Range::all(), Range::all()), input, "", default_l1, default_lInf);
- }
- TEST_P(Test_Caffe_layers, Eltwise)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
- testLayerUsingCaffeModels("layer_eltwise");
- }
- TEST_P(Test_Caffe_layers, PReLU)
- {
- double lInf = (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_OPENCL_FP16) ? 0.021 : 0.0;
- testLayerUsingCaffeModels("layer_prelu", true, true, 0.0, lInf);
- }
- // TODO: fix an unstable test case
- TEST_P(Test_Caffe_layers, layer_prelu_fc)
- {
- if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- // Reference output values are in range [-0.0001, 10.3906]
- double l1 = (target == DNN_TARGET_MYRIAD) ? 0.005 : 0.0;
- double lInf = (target == DNN_TARGET_MYRIAD) ? 0.021 : 0.0;
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
- {
- l1 = 0.006f; lInf = 0.05f;
- }
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- {
- l1 = 0.01f; lInf = 0.05f;
- }
- #endif
- testLayerUsingCaffeModels("layer_prelu_fc", true, false, l1, lInf);
- }
- TEST_P(Test_Caffe_layers, Reshape_Split_Slice)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- Net net = readNetFromCaffe(_tf("reshape_and_slice_routines.prototxt"));
- ASSERT_FALSE(net.empty());
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- Mat input(6, 12, CV_32F);
- RNG rng(0);
- rng.fill(input, RNG::UNIFORM, -1, 1);
- net.setInput(input, "input");
- Mat output = net.forward("output");
- normAssert(input, output, "", default_l1, default_lInf);
- }
- TEST_P(Test_Caffe_layers, Conv_Elu)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE <= 2018050000
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- Net net = readNetFromTensorflow(_tf("layer_elu_model.pb"));
- ASSERT_FALSE(net.empty());
- Mat inp = blobFromNPY(_tf("layer_elu_in.npy"));
- Mat ref = blobFromNPY(_tf("layer_elu_out.npy"));
- net.setInput(inp, "input");
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- Mat out = net.forward();
- double l1 = default_l1, lInf = default_lInf;
- if (target == DNN_TARGET_CUDA_FP16)
- {
- l1 = 0.0002;
- lInf = 0.0005;
- }
- normAssert(ref, out, "", l1, lInf);
- }
- class Layer_LSTM_Test : public ::testing::Test
- {
- public:
- int numInp, numOut;
- Mat Wh, Wx, b, h, c;
- Ptr<LSTMLayer> layer;
- std::vector<Mat> inputs, outputs;
- Layer_LSTM_Test() {}
- void init(const MatShape &inpShape_, const MatShape &outShape_,
- bool produceCellOutput, bool useTimestampDim)
- {
- numInp = total(inpShape_);
- numOut = total(outShape_);
- Wh = Mat::ones(4 * numOut, numOut, CV_32F);
- Wx = Mat::ones(4 * numOut, numInp, CV_32F);
- b = Mat::ones(4 * numOut, 1, CV_32F);
- h = Mat::ones(4, numOut, CV_32F);
- c = Mat::ones(4, numOut, CV_32F);
- LayerParams lp;
- lp.blobs.resize(5);
- lp.blobs[0] = Wh;
- lp.blobs[1] = Wx;
- lp.blobs[2] = b;
- lp.blobs[3] = h;
- lp.blobs[4] = c;
- lp.set<bool>("produce_cell_output", produceCellOutput);
- lp.set<bool>("use_timestamp_dim", useTimestampDim);
- layer = LSTMLayer::create(lp);
- layer->setOutShape(outShape_);
- }
- };
- TEST_F(Layer_LSTM_Test, get_set_test)
- {
- const int TN = 4;
- MatShape inpShape = shape(5, 3, 2);
- MatShape outShape = shape(3, 1, 2);
- MatShape inpResShape = concat(shape(TN), inpShape);
- MatShape outResShape = concat(shape(TN), outShape);
- init(inpShape, outShape, true, false);
- layer->setOutShape(outShape);
- Mat C((int)outResShape.size(), &outResShape[0], CV_32F);
- randu(C, -1., 1.);
- Mat H = C.clone();
- randu(H, -1., 1.);
- Mat inp((int)inpResShape.size(), &inpResShape[0], CV_32F);
- randu(inp, -1., 1.);
- inputs.push_back(inp);
- runLayer(layer, inputs, outputs);
- EXPECT_EQ(2u, outputs.size());
- print(outResShape, "outResShape");
- print(shape(outputs[0]), "out0");
- print(shape(outputs[0]), "out1");
- EXPECT_EQ(outResShape, shape(outputs[0]));
- EXPECT_EQ(outResShape, shape(outputs[1]));
- EXPECT_EQ(0, layer->inputNameToIndex("x"));
- EXPECT_EQ(0, layer->outputNameToIndex("h"));
- EXPECT_EQ(1, layer->outputNameToIndex("c"));
- }
- TEST(Layer_LSTM_Test_Accuracy_with_, CaffeRecurrent)
- {
- LayerParams lp;
- lp.blobs.resize(5);
- lp.blobs[0] = blobFromNPY(_tf("lstm.prototxt.w_2.npy")); // Wh
- lp.blobs[1] = blobFromNPY(_tf("lstm.prototxt.w_0.npy")); // Wx
- lp.blobs[2] = blobFromNPY(_tf("lstm.prototxt.w_1.npy")); // bias
- lp.blobs[3] = Mat::zeros(2, 17, CV_32F); // h_0
- lp.blobs[4] = Mat::zeros(2, 17, CV_32F); // c_0
- Ptr<LSTMLayer> layer = LSTMLayer::create(lp);
- Mat inp = blobFromNPY(_tf("recurrent.input.npy"));
- std::vector<Mat> inputs(1, inp), outputs;
- runLayer(layer, inputs, outputs);
- Mat h_t_reference = blobFromNPY(_tf("lstm.prototxt.h_1.npy"));
- normAssert(h_t_reference, outputs[0]);
- }
- TEST(Layer_LSTM_Test_Accuracy_with_, HiddenParams)
- {
- Mat Wx = blobFromNPY(_tf("lstm.hidden.W.npy"));
- Mat Wh = blobFromNPY(_tf("lstm.hidden.R.npy"));
- Mat b = blobFromNPY(_tf("lstm.hidden.B.npy"));
- Mat h0 = blobFromNPY(_tf("lstm.hidden.h0.npy"));
- Mat c0 = blobFromNPY(_tf("lstm.hidden.c0.npy"));
- const int numHidden = 3;
- const int numDirs = Wx.size[0];
- const int numFeatures = Wx.size[2];
- b = b.reshape(1, b.size[0]);
- Mat bx = b.colRange(0, b.cols / 2);
- Mat bh = b.colRange(b.cols / 2, b.cols);
- b = bx + bh;
- // IFGO->IGFO
- for (int k = 0; k < numDirs; ++k)
- {
- float* WxData = Wx.ptr<float>(k);
- float* WhData = Wh.ptr<float>(k);
- float* biasData = b.ptr<float>(k);
- for (int j = 0; j < numHidden; ++j)
- {
- for (int i = 0; i < numFeatures; ++i)
- {
- std::swap(WxData[(numHidden + j) * numFeatures + i],
- WxData[(numHidden * 2 + j) * numFeatures + i]);
- }
- for (int i = 0; i < numHidden; ++i)
- {
- std::swap(WhData[(numHidden + j) * numHidden + i],
- WhData[(numHidden * 2 + j) * numHidden + i]);
- }
- std::swap(biasData[numHidden + j], biasData[numHidden * 2 + j]);
- }
- }
- Wx = Wx.reshape(1, Wx.size[0] * Wx.size[1]);
- Wh = Wh.reshape(1, Wh.size[0] * Wh.size[1]);
- h0 = h0.reshape(1, h0.size[0] * h0.size[1]);
- c0 = c0.reshape(1, c0.size[0] * c0.size[1]);
- LayerParams lstmParams;
- lstmParams.blobs.resize(5);
- lstmParams.blobs[0] = Wh;
- lstmParams.blobs[1] = Wx;
- lstmParams.blobs[2] = b;
- lstmParams.blobs[3] = h0;
- lstmParams.blobs[4] = c0;
- lstmParams.set("bidirectional", false);
- Ptr<LSTMLayer> layer = LSTMLayer::create(lstmParams);
- Mat inp = blobFromNPY(_tf("lstm.hidden.input.npy"));
- std::vector<Mat> inputs(1, inp), outputs;
- runLayer(layer, inputs, outputs);
- Mat h_t_reference = blobFromNPY(_tf("lstm.hidden.output.npy"));
- normAssert(h_t_reference, outputs[0]);
- }
- TEST(Layer_GRU_Test_Accuracy_with_, Pytorch)
- {
- Mat Wx = blobFromNPY(_tf("gru.W.npy"));
- Mat Wh = blobFromNPY(_tf("gru.R.npy"));
- Mat b = blobFromNPY(_tf("gru.B.npy"));
- Mat h0 = blobFromNPY(_tf("gru.h0.npy"));
- Wx = Wx.reshape(1, Wx.size[0] * Wx.size[1]);
- Wh = Wh.reshape(1, Wh.size[0] * Wh.size[1]);
- h0 = h0.reshape(1, h0.size[0] * h0.size[1]);
- b = b.reshape(1, b.size[0]);
- LayerParams gruParams;
- gruParams.blobs.resize(4);
- gruParams.blobs[0] = Wh;
- gruParams.blobs[1] = Wx;
- gruParams.blobs[2] = b;
- gruParams.blobs[3] = h0;
- gruParams.set("bidirectional", false);
- Ptr<GRULayer> layer = GRULayer::create(gruParams);
- Mat inp = blobFromNPY(_tf("gru.input.npy"));
- std::vector<Mat> inputs(1, inp), outputs;
- runLayer(layer, inputs, outputs);
- Mat h_t_reference = blobFromNPY(_tf("gru.output.npy"));
- normAssert(h_t_reference, outputs[0]);
- }
- TEST(Layer_RNN_Test_Accuracy_with_, CaffeRecurrent)
- {
- Ptr<RNNLayer> layer = RNNLayer::create(LayerParams());
- layer->setWeights(
- blobFromNPY(_tf("rnn.prototxt.w_0.npy")),
- blobFromNPY(_tf("rnn.prototxt.w_1.npy")),
- blobFromNPY(_tf("rnn.prototxt.w_2.npy")),
- blobFromNPY(_tf("rnn.prototxt.w_3.npy")),
- blobFromNPY(_tf("rnn.prototxt.w_4.npy")) );
- std::vector<Mat> output, input(1, blobFromNPY(_tf("recurrent.input.npy")));
- runLayer(layer, input, output);
- Mat h_ref = blobFromNPY(_tf("rnn.prototxt.h_1.npy"));
- normAssert(h_ref, output[0]);
- }
- TEST(Layer_LSTM_Test_Accuracy_, Reverse)
- {
- // This handcrafted setup calculates (approximately) the prefix sum of the
- // input, assuming the inputs are suitably small.
- cv::Mat input(2, 1, CV_32FC1);
- input.at<float>(0, 0) = 1e-5f;
- input.at<float>(1, 0) = 2e-5f;
- cv::Mat Wx(4, 1, CV_32FC1);
- Wx.at<float>(0, 0) = 0.f; // Input gate
- Wx.at<float>(1, 0) = 0.f; // Forget gate
- Wx.at<float>(2, 0) = 0.f; // Output gate
- Wx.at<float>(3, 0) = 1.f; // Update signal
- cv::Mat Wh(4, 1, CV_32FC1);
- Wh.at<float>(0, 0) = 0.f; // Input gate
- Wh.at<float>(1, 0) = 0.f; // Forget gate
- Wh.at<float>(2, 0) = 0.f; // Output gate
- Wh.at<float>(3, 0) = 0.f; // Update signal
- cv::Mat bias(4, 1, CV_32FC1);
- bias.at<float>(0, 0) = 1e10f; // Input gate - always allows input to c
- bias.at<float>(1, 0) = 1e10f; // Forget gate - never forget anything on c
- bias.at<float>(2, 0) = 1e10f; // Output gate - always output everything
- bias.at<float>(3, 0) = 0.f; // Update signal
- cv::Mat hInternal = cv::Mat::zeros(1, 1, CV_32FC1);
- cv::Mat cInternal = cv::Mat::zeros(1, 1, CV_32FC1);
- LayerParams lp;
- lp.set("reverse", true);
- lp.set("use_timestamp_dim", true);
- lp.blobs.clear();
- lp.blobs.push_back(Wh);
- lp.blobs.push_back(Wx);
- lp.blobs.push_back(bias);
- lp.blobs.push_back(hInternal);
- lp.blobs.push_back(cInternal);
- cv::Ptr<cv::dnn::LSTMLayer> layer = LSTMLayer::create(lp);
- std::vector<cv::Mat> outputs;
- std::vector<cv::Mat> inputs;
- inputs.push_back(input);
- runLayer(layer, inputs, outputs);
- ASSERT_EQ(1, outputs.size());
- cv::Mat out = outputs[0];
- ASSERT_EQ(3, out.dims);
- ASSERT_EQ(shape(2, 1, 1), shape(out));
- float* data = reinterpret_cast<float*>(out.data);
- EXPECT_NEAR(std::tanh(1e-5f) + std::tanh(2e-5f), data[0], 1e-10);
- EXPECT_NEAR(std::tanh(2e-5f), data[1], 1e-10);
- }
- class Layer_RNN_Test : public ::testing::Test
- {
- public:
- int nX, nH, nO, nT, nS;
- Mat Whh, Wxh, bh, Who, bo;
- Ptr<RNNLayer> layer;
- std::vector<Mat> inputs, outputs;
- Layer_RNN_Test()
- {
- nT = 3;
- nS = 5;
- nX = 31;
- nH = 64;
- nO = 100;
- Whh = Mat::ones(nH, nH, CV_32F);
- Wxh = Mat::ones(nH, nX, CV_32F);
- bh = Mat::ones(nH, 1, CV_32F);
- Who = Mat::ones(nO, nH, CV_32F);
- bo = Mat::ones(nO, 1, CV_32F);
- layer = RNNLayer::create(LayerParams());
- layer->setProduceHiddenOutput(true);
- layer->setWeights(Wxh, bh, Whh, Who, bo);
- }
- };
- TEST_F(Layer_RNN_Test, get_set_test)
- {
- int sz[] = { nT, nS, 1, nX };
- Mat inp(4, sz, CV_32F);
- randu(inp, -1., 1.);
- inputs.push_back(inp);
- runLayer(layer, inputs, outputs);
- EXPECT_EQ(outputs.size(), 2u);
- EXPECT_EQ(shape(outputs[0]), shape(nT, nS, nO));
- EXPECT_EQ(shape(outputs[1]), shape(nT, nS, nH));
- }
- TEST_P(Test_Caffe_layers, Accum)
- {
- if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- testLayerUsingCaffeModels("accum", false, false, 0.0, 0.0, 2);
- testLayerUsingCaffeModels("accum_ref", false, false, 0.0, 0.0, 2);
- }
- TEST_P(Test_Caffe_layers, FlowWarp)
- {
- if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- testLayerUsingCaffeModels("flow_warp", false, false, 0.0, 0.0, 2);
- }
- TEST_P(Test_Caffe_layers, ChannelNorm)
- {
- if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- testLayerUsingCaffeModels("channel_norm", false, false);
- }
- TEST_P(Test_Caffe_layers, DataAugmentation)
- {
- if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- testLayerUsingCaffeModels("data_augmentation", true, false);
- testLayerUsingCaffeModels("data_augmentation_2x1", true, false);
- testLayerUsingCaffeModels("data_augmentation_8x6", true, false);
- }
- TEST_P(Test_Caffe_layers, Resample)
- {
- if (backend != DNN_BACKEND_OPENCV)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- testLayerUsingCaffeModels("nearest_2inps", false, false, 0.0, 0.0, 2);
- testLayerUsingCaffeModels("nearest", false, false);
- }
- TEST_P(Test_Caffe_layers, Correlation)
- {
- if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER,
- CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- testLayerUsingCaffeModels("correlation", false, false, 0.0, 0.0, 2);
- }
- TEST_P(Test_Caffe_layers, Convolution2Inputs)
- {
- testLayerUsingCaffeModels("conv_2_inps", true, false, 0.0, 0.0, 2);
- }
- TEST_P(Test_Caffe_layers, ROIPooling_Accuracy)
- {
- Net net = readNetFromCaffe(_tf("net_roi_pooling.prototxt"));
- ASSERT_FALSE(net.empty());
- Mat inp = blobFromNPY(_tf("net_roi_pooling.input.npy"));
- Mat rois = blobFromNPY(_tf("net_roi_pooling.rois.npy"));
- Mat ref = blobFromNPY(_tf("net_roi_pooling.npy"));
- checkBackend(&inp, &ref);
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- net.setInput(inp, "input");
- net.setInput(rois, "rois");
- Mat out = net.forward();
- double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-3 : 1e-5;
- double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-3 : 1e-4;
- if (target == DNN_TARGET_CUDA_FP16)
- {
- l1 = 2e-4;
- lInf = 9e-4;
- }
- normAssert(out, ref, "", l1, lInf);
- }
- TEST_P(Test_Caffe_layers, FasterRCNN_Proposal)
- {
- if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- if(backend == DNN_BACKEND_CUDA)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); /* Proposal layer is unsupported */
- Net net = readNetFromCaffe(_tf("net_faster_rcnn_proposal.prototxt"));
- Mat scores = blobFromNPY(_tf("net_faster_rcnn_proposal.scores.npy"));
- Mat deltas = blobFromNPY(_tf("net_faster_rcnn_proposal.deltas.npy"));
- Mat imInfo = (Mat_<float>(1, 3) << 600, 800, 1.6f);
- net.setInput(scores, "rpn_cls_prob_reshape");
- net.setInput(deltas, "rpn_bbox_pred");
- net.setInput(imInfo, "im_info");
- std::vector<Mat> outs;
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- net.forward(outs, "output");
- for (int i = 0; i < 2; ++i)
- {
- Mat ref = blobFromNPY(_tf(i == 0 ? "net_faster_rcnn_proposal.out_rois.npy" :
- "net_faster_rcnn_proposal.out_scores.npy"));
- const int numDets = ref.size[0];
- EXPECT_LE(numDets, outs[i].size[0]);
- normAssert(outs[i].rowRange(0, numDets), ref);
- if (numDets < outs[i].size[0])
- {
- EXPECT_EQ(countNonZero(outs[i].rowRange(numDets, outs[i].size[0])), 0);
- }
- }
- }
- typedef testing::TestWithParam<tuple<Vec4i, Vec2i, bool> > Scale_untrainable;
- TEST_P(Scale_untrainable, Accuracy)
- {
- Vec4i inpShapeVec = get<0>(GetParam());
- int axis = get<1>(GetParam())[0];
- int weightsDims = get<1>(GetParam())[1];
- bool testFusion = get<2>(GetParam());
- const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]};
- // Create a network with two inputs. Scale layer multiplies a first input to
- // a second one. See http://caffe.berkeleyvision.org/tutorial/layers/scale.html
- Net net;
- // Check that this version of Scale layer won't be fused with Convolution layer.
- if (testFusion)
- {
- LayerParams lp;
- lp.set("kernel_size", 1);
- lp.set("num_output", 3);
- lp.set("group", 3);
- lp.set("bias_term", false);
- lp.type = "Convolution";
- lp.name = "testConv";
- std::vector<int> weightsShape(4);
- weightsShape[0] = 3; // #outChannels
- weightsShape[1] = 1; // #inpChannels / group
- weightsShape[2] = 1; // height
- weightsShape[3] = 1; // width
- Mat weights(weightsShape, CV_32F);
- weights.setTo(1);
- lp.blobs.push_back(weights);
- net.addLayerToPrev(lp.name, lp.type, lp);
- }
- LayerParams lp;
- lp.type = "Scale";
- lp.name = "testLayer";
- lp.set("axis", axis);
- int id = net.addLayerToPrev(lp.name, lp.type, lp);
- net.connect(0, 1, id, 1);
- Mat input(4, inpShape, CV_32F);
- Mat weights(weightsDims, &inpShape[axis], CV_32F);
- randu(input, -1, 1);
- randu(weights, -1, 1);
- std::vector<String> inpNames(2);
- inpNames[0] = "scale_input";
- inpNames[1] = "scale_weights";
- net.setInputsNames(inpNames);
- net.setInput(input, inpNames[0]);
- net.setInput(weights, inpNames[1]);
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- Mat out = net.forward();
- Mat ref(input.dims, input.size, CV_32F);
- float* inpData = (float*)input.data;
- float* refData = (float*)ref.data;
- float* weightsData = (float*)weights.data;
- int spatialSize = 1;
- for (int i = axis + weightsDims; i < 4; ++i)
- spatialSize *= inpShape[i];
- for (int i = 0; i < ref.total(); ++i)
- {
- float w = weightsData[(i / spatialSize) % weights.total()];
- refData[i] = inpData[i] * w;
- }
- normAssert(out, ref);
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test, Scale_untrainable, Combine(
- /*input size*/ Values(Vec4i(2, 3, 4, 5)),
- /*axis, #dims*/ Values(Vec2i(0, 1), Vec2i(0, 2), Vec2i(0, 3), Vec2i(0, 4),
- Vec2i(1, 1), Vec2i(1, 2), Vec2i(1, 3),
- Vec2i(2, 1), Vec2i(2, 2),
- Vec2i(3, 1)),
- /*conv fusion*/ testing::Bool()
- ));
- typedef testing::TestWithParam<tuple<Vec4i, Vec4i, int, int, int> > Crop;
- TEST_P(Crop, Accuracy)
- {
- Vec4i inpShapeVec = get<0>(GetParam());
- Vec4i sizShapeVec = get<1>(GetParam());
- int axis = get<2>(GetParam());
- int numOffsets = get<3>(GetParam());
- int offsetVal = get<4>(GetParam());
- const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]};
- const int sizShape[] = {sizShapeVec[0], sizShapeVec[1], sizShapeVec[2], sizShapeVec[3]};
- // Create a network with two inputs. Crop layer crops a first input to
- // the size of a second one.
- // See http://caffe.berkeleyvision.org/tutorial/layers/crop.html
- Net net;
- LayerParams lp;
- lp.name = "testCrop";
- lp.type = "Crop";
- lp.set("axis", axis);
- if (numOffsets > 0)
- {
- std::vector<int> offsets(numOffsets, offsetVal);
- lp.set("offset", DictValue::arrayInt<int*>(&offsets[0], offsets.size()));
- }
- else
- offsetVal = 0;
- int id = net.addLayerToPrev(lp.name, lp.type, lp);
- net.connect(0, 1, id, 1);
- Mat inpImage(4, inpShape, CV_32F);
- Mat sizImage(4, sizShape, CV_32F);
- randu(inpImage, -1, 1);
- randu(sizImage, -1, 1);
- std::vector<String> inpNames(2);
- inpNames[0] = "cropImage";
- inpNames[1] = "sizImage";
- net.setInputsNames(inpNames);
- net.setInput(inpImage, inpNames[0]);
- net.setInput(sizImage, inpNames[1]);
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- // There are a few conditions that represent invalid input to the crop
- // layer, so in those cases we want to verify an exception is thrown.
- bool shouldThrowException = false;
- if (numOffsets > 1 && numOffsets != 4 - axis)
- shouldThrowException = true;
- else
- for (int i = axis; i < 4; i++)
- if (sizShape[i] + offsetVal > inpShape[i])
- shouldThrowException = true;
- Mat out;
- if (shouldThrowException)
- {
- ASSERT_ANY_THROW(out = net.forward());
- return;
- }
- else
- out = net.forward();
- // Finally, compare the cropped output blob from the DNN layer (out)
- // to a reference blob (ref) that we compute here.
- std::vector<Range> crop_range;
- crop_range.resize(4, Range::all());
- for (int i = axis; i < 4; i++)
- crop_range[i] = Range(offsetVal, sizShape[i] + offsetVal);
- Mat ref(sizImage.dims, sizImage.size, CV_32F);
- inpImage(&crop_range[0]).copyTo(ref);
- normAssert(out, ref);
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test, Crop, Combine(
- /*input blob shape*/ Values(Vec4i(1, 3, 20, 30)),
- /*cropsize blob shape*/ Values(Vec4i(1, 3, 10, 12)),
- /*start axis*/ Values(0, 1, 2),
- /*number of offsets*/ Values(0, 1, 2, 4),
- /*offset value*/ Values(3, 4)
- ));
- // Check that by default average pooling layer should not count zero padded values
- // into the normalization area.
- TEST_P(Test_Caffe_layers, Average_pooling_kernel_area)
- {
- LayerParams lp;
- lp.name = "testAvePool";
- lp.type = "Pooling";
- lp.set("kernel_size", 2);
- lp.set("stride", 2);
- lp.set("pool", "AVE");
- Net net;
- net.addLayerToPrev(lp.name, lp.type, lp);
- // 1 2 | 3
- // 4 5 | 6
- // ----+--
- // 7 8 | 9
- Mat inp = (Mat_<float>(3, 3) << 1, 2, 3, 4, 5, 6, 7, 8, 9);
- Mat ref = (Mat_<float>(2, 2) << (1 + 2 + 4 + 5) / 4.f, (3 + 6) / 2.f, (7 + 8) / 2.f, 9);
- Mat tmp = blobFromImage(inp);
- net.setInput(blobFromImage(inp));
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- Mat out = net.forward();
- normAssert(out, blobFromImage(ref));
- }
- TEST_P(Test_Caffe_layers, PriorBox_repeated)
- {
- Net net = readNet(_tf("prior_box.prototxt"));
- int inp_size[] = {1, 3, 10, 10};
- int shape_size[] = {1, 2, 3, 4};
- Mat inp(4, inp_size, CV_32F);
- randu(inp, -1.0f, 1.0f);
- Mat shape(4, shape_size, CV_32F);
- randu(shape, -1.0f, 1.0f);
- net.setInput(inp, "data");
- net.setInput(shape, "shape");
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- Mat out = net.forward();
- Mat ref = blobFromNPY(_tf("priorbox_output.npy"));
- double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-3 : 1e-5;
- double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-3 : 1e-4;
- if (target == DNN_TARGET_CUDA_FP16)
- {
- l1 = 7e-5;
- lInf = 0.0005;
- }
- normAssert(out, ref, "", l1, lInf);
- }
- // Test PriorBoxLayer in case of no aspect ratios (just squared proposals).
- TEST_P(Test_Caffe_layers, PriorBox_squares)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- LayerParams lp;
- lp.name = "testPriorBox";
- lp.type = "PriorBox";
- lp.set("min_size", 2);
- lp.set("flip", true);
- lp.set("clip", true);
- float variance[] = {0.1f, 0.1f, 0.2f, 0.2f};
- float aspectRatios[] = {1.0f}; // That should be ignored.
- lp.set("variance", DictValue::arrayReal<float*>(&variance[0], 4));
- lp.set("aspect_ratio", DictValue::arrayReal<float*>(&aspectRatios[0], 1));
- Net net;
- int id = net.addLayerToPrev(lp.name, lp.type, lp);
- net.connect(0, 0, id, 1); // The second input is an input image. Shapes are used for boxes normalization.
- Mat inp(1, 2, CV_32F);
- randu(inp, -1, 1);
- net.setInput(blobFromImage(inp));
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- Mat out = net.forward();
- Mat ref = (Mat_<float>(4, 4) << 0.0, 0.0, 0.75, 1.0,
- 0.25, 0.0, 1.0, 1.0,
- 0.1f, 0.1f, 0.2f, 0.2f,
- 0.1f, 0.1f, 0.2f, 0.2f);
- double l1 = 1e-5;
- if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CUDA_FP16)
- l1 = 2e-5;
- normAssert(out.reshape(1, 4), ref, "", l1);
- }
- typedef TestWithParam<tuple<int, int> > Layer_Test_DWconv_Prelu;
- TEST_P(Layer_Test_DWconv_Prelu, Accuracy)
- {
- // Test case
- // input img size 3x16x16 value all 1
- // |
- // v
- // dw_conv weight[0]=-1 weight[1]=-2 weight[2]=-3 bias={1,2,3}
- // |
- // v
- // prelu weight={1,2,3}
- // |
- // v
- // output out size 3x14x14 if right: out[0]=-8 out[0]=-32 out[0]=-72
- // but current opencv output: out[0]=-24 out[0]=-48 out[0]=-72
- const int num_input = get<0>(GetParam()); //inpChannels
- const int group = 3; //outChannels=group when group>1
- const int num_output = get<1>(GetParam());
- const int kernel_depth = num_input/group;
- CV_Assert_N(num_output >= group, num_output % group == 0, num_input % group == 0);
- Net net;
- //layer 1: dwconv
- LayerParams lp;
- lp.name = "dwconv";
- lp.type = "Convolution";
- lp.set("kernel_size", 3);
- lp.set("num_output", num_output);
- lp.set("pad", 0);
- lp.set("group", group);
- lp.set("stride", 1);
- lp.set("engine", "CAFFE");
- lp.set("bias_term", "true");
- std::vector<int> weightsShape(4);
- weightsShape[0] = num_output; // #outChannels
- weightsShape[1] = kernel_depth; // #inpChannels / group
- weightsShape[2] = 3; // height
- weightsShape[3] = 3; // width
- Mat weights(weightsShape, CV_32F, Scalar(1));
- //assign weights
- for (int i = 0; i < weightsShape[0]; ++i)
- {
- for (int j = 0; j < weightsShape[1]; ++j)
- {
- for (int k = 0; k < weightsShape[2]; ++k)
- {
- for (int l = 0; l < weightsShape[3]; ++l)
- {
- weights.ptr<float>(i, j, k)[l]=-1*(i+1);
- }
- }
- }
- }
- lp.blobs.push_back(weights);
- //assign bias
- Mat bias(1, num_output, CV_32F, Scalar(1));
- for (int i = 0; i < 1; ++i)
- {
- for (int j = 0; j < num_output; ++j)
- {
- bias.ptr<float>(i)[j]=j+1;
- }
- }
- lp.blobs.push_back(bias);
- net.addLayerToPrev(lp.name, lp.type, lp);
- //layer 2: prelu
- LayerParams lpr;
- lpr.name = "dw_relu";
- lpr.type = "PReLU";
- Mat weightsp(1, num_output, CV_32F, Scalar(1));
- //assign weights
- for (int i = 0; i < 1; ++i)
- {
- for (int j = 0; j < num_output; ++j)
- {
- weightsp.ptr<float>(i)[j]=j+1;
- }
- }
- lpr.blobs.push_back(weightsp);
- net.addLayerToPrev(lpr.name, lpr.type, lpr);
- int shape[] = {1, num_input, 16, 16};
- Mat in_blob(4, &shape[0], CV_32FC1, Scalar(1));
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- net.setInput(in_blob);
- Mat out = net.forward();
- //assign target
- std::vector<int> outShape(4);
- outShape[0] = 1;
- outShape[1] = num_output; // outChannels
- outShape[2] = 14; // height
- outShape[3] = 14; // width
- Mat target(outShape, CV_32F, Scalar(1));
- for (int i = 0; i < outShape[0]; ++i)
- {
- for (int j = 0; j < outShape[1]; ++j)
- {
- for (int k = 0; k < outShape[2]; ++k)
- {
- for (int l = 0; l < outShape[3]; ++l)
- {
- target.ptr<float>(i, j, k)[l]=(-9*kernel_depth*(j+1)+j+1)*(j+1);
- }
- }
- }
- }
- normAssert(out, target);
- }
- INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_DWconv_Prelu, Combine(Values(3, 6), Values(3, 6)));
- #ifdef HAVE_INF_ENGINE
- // Using Intel's Model Optimizer generate .xml and .bin files:
- // ./ModelOptimizer -w /path/to/caffemodel -d /path/to/prototxt \
- // -p FP32 -i -b ${batch_size} -o /path/to/output/folder
- typedef testing::TestWithParam<tuple<Backend, Target> > Layer_Test_Convolution_DLDT;
- TEST_P(Layer_Test_Convolution_DLDT, Accuracy)
- {
- const Backend backendId = get<0>(GetParam());
- const Target targetId = get<1>(GetParam());
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- throw SkipTestException("No support for async forward");
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
- else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
- else
- FAIL() << "Unknown backendId";
- Net netDefault = readNet(_tf("layer_convolution.caffemodel"), _tf("layer_convolution.prototxt"));
- Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin"));
- Mat inp = blobFromNPY(_tf("blob.npy"));
- netDefault.setInput(inp);
- netDefault.setPreferableBackend(DNN_BACKEND_OPENCV);
- Mat outDefault = netDefault.forward();
- net.setInput(inp);
- net.setPreferableBackend(backendId);
- net.setPreferableTarget(targetId);
- Mat out = net.forward();
- double l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.5e-3 : 1e-5;
- double lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.8e-2 : 1e-4;
- normAssert(outDefault, out, "", l1, lInf);
- std::vector<int> outLayers = net.getUnconnectedOutLayers();
- ASSERT_EQ(net.getLayer(outLayers[0])->name, "output");
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- ASSERT_EQ(net.getLayer(outLayers[0])->type, "Convolution");
- else
- ASSERT_EQ(net.getLayer(outLayers[0])->type, "Add");
- }
- TEST_P(Layer_Test_Convolution_DLDT, setInput_uint8)
- {
- const Backend backendId = get<0>(GetParam());
- const Target targetId = get<1>(GetParam());
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- throw SkipTestException("No support for async forward");
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
- else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
- else
- FAIL() << "Unknown backendId";
- int blobSize[] = {2, 6, 75, 113};
- Mat inputs[] = {Mat(4, &blobSize[0], CV_8U), Mat()};
- randu(inputs[0], 0, 255);
- inputs[0].convertTo(inputs[1], CV_32F);
- Mat outs[2];
- for (int i = 0; i < 2; ++i)
- {
- Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin"));
- net.setPreferableBackend(backendId);
- net.setPreferableTarget(targetId);
- net.setInput(inputs[i]);
- outs[i] = net.forward();
- ASSERT_EQ(outs[i].type(), CV_32F);
- }
- if (targetId != DNN_TARGET_MYRIAD)
- normAssert(outs[0], outs[1]);
- }
- TEST_P(Layer_Test_Convolution_DLDT, multithreading)
- {
- const Backend backendId = get<0>(GetParam());
- const Target targetId = get<1>(GetParam());
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- throw SkipTestException("No support for async forward");
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
- else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
- else
- FAIL() << "Unknown backendId";
- std::string xmlPath = _tf("layer_convolution.xml");
- std::string binPath = _tf("layer_convolution.bin");
- Net firstNet = readNet(xmlPath, binPath);
- Net secondNet = readNet(xmlPath, binPath);
- Mat inp = blobFromNPY(_tf("blob.npy"));
- firstNet.setInput(inp);
- secondNet.setInput(inp);
- firstNet.setPreferableBackend(backendId);
- firstNet.setPreferableTarget(targetId);
- secondNet.setPreferableBackend(backendId);
- secondNet.setPreferableTarget(targetId);
- Mat out1, out2;
- std::thread t1([&]{out1 = firstNet.forward();});
- std::thread t2([&]{out2 = secondNet.forward();});
- t1.join();
- t2.join();
- Mat ref = blobFromNPY(_tf("layer_convolution.npy"));
- double l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.5e-3 : 1e-5;
- double lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.8e-2 : 1e-4;
- normAssert(out1, ref, "first thread", l1, lInf);
- normAssert(out2, ref, "second thread", l1, lInf);
- }
- INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Convolution_DLDT,
- dnnBackendsAndTargetsIE()
- );
- // 1. Create a .prototxt file with the following network:
- // layer {
- // type: "Input" name: "data" top: "data"
- // input_param { shape { dim: 1 dim: 2 dim: 3 } }
- // }
- // layer {
- // type: "Input" name: "second_input" top: "second_input"
- // input_param { shape { dim: 1 dim: 2 dim: 3 } }
- // }
- // layer {
- // type: "Eltwise" name: "output" top: "output"
- // bottom: "data" bottom: "second_input"
- // eltwise_param { operation: SUM }
- // }
- //
- // 2. Create a .caffemodel file using Caffe:
- //
- // import caffe
- // net = caffe.Net('/path/to/prototxt', caffe.TEST)
- // net.save('/path/to/caffemodel')
- //
- // 3. Convert using ModelOptimizer.
- typedef testing::TestWithParam<tuple<int, int, Target, std::vector<int> > > Test_DLDT_two_inputs_3dim;
- TEST_P(Test_DLDT_two_inputs_3dim, as_IR)
- {
- int firstInpType = get<0>(GetParam());
- int secondInpType = get<1>(GetParam());
- Target targetId = get<2>(GetParam());
- Net net = readNet(_tf("net_two_inputs.xml"), _tf("net_two_inputs.bin"));
- std::vector<int> inpSize = get<3>(GetParam());
- Mat firstInp(3, inpSize.data(), firstInpType);
- Mat secondInp(3, inpSize.data(), secondInpType);
- randu(firstInp, 0, 255);
- randu(secondInp, 0, 255);
- net.setInput(firstInp, "data");
- net.setInput(secondInp, "second_input");
- net.setPreferableTarget(targetId);
- double l1 = ((targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) &&
- (firstInpType == CV_32F || secondInpType == CV_32F)) ? 0.06 : 0.0;
- double lInf = ((targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) &&
- (firstInpType == CV_32F || secondInpType == CV_32F)) ? 0.23 : 0.0;
- Mat out = net.forward();
- Mat ref;
- cv::add(firstInp, secondInp, ref, Mat(), CV_32F);
- normAssert(out, ref, "", l1, lInf);
- }
- std::vector< std::vector<int> > list_sizes{ {1, 2, 3}, {3, 2, 1}, {5, 5, 5}, {13, 7, 11} };
- INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_DLDT_two_inputs_3dim, Combine(
- Values(CV_8U, CV_32F), Values(CV_8U, CV_32F),
- testing::ValuesIn(getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)),
- testing::ValuesIn(list_sizes)
- ));
- class UnsupportedLayer : public Layer
- {
- public:
- UnsupportedLayer(const LayerParams ¶ms) : Layer(params) {}
- static Ptr<Layer> create(const LayerParams& params)
- {
- return Ptr<Layer>(new UnsupportedLayer(params));
- }
- virtual bool supportBackend(int backendId) CV_OVERRIDE
- {
- return backendId == DNN_BACKEND_OPENCV;
- }
- virtual void forward(cv::InputArrayOfArrays inputs, cv::OutputArrayOfArrays outputs, cv::OutputArrayOfArrays internals) CV_OVERRIDE {}
- };
- typedef DNNTestLayer Test_DLDT_layers;
- static void test_dldt_fused_output(Backend backend, Target target)
- {
- static const int kNumChannels = 3;
- Net net;
- {
- LayerParams lp;
- lp.set("kernel_size", 1);
- lp.set("num_output", 3);
- lp.set("bias_term", false);
- lp.type = "Convolution";
- lp.name = "testConv";
- lp.blobs.push_back(Mat({kNumChannels, 1, 1, 1}, CV_32F, Scalar(1)));
- net.addLayerToPrev(lp.name, lp.type, lp);
- }
- {
- LayerParams lp;
- lp.set("bias_term", false);
- lp.type = "Scale";
- lp.name = "testScale";
- lp.blobs.push_back(Mat({kNumChannels}, CV_32F, Scalar(1)));
- net.addLayerToPrev(lp.name, lp.type, lp);
- }
- {
- LayerParams lp;
- net.addLayerToPrev("unsupported_layer", "Unsupported", lp);
- }
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- net.setInput(Mat({1, 1, 2, 3}, CV_32FC1, Scalar(1)));
- net.forward();
- }
- TEST_P(Test_DLDT_layers, fused_output)
- {
- CV_DNN_REGISTER_LAYER_CLASS(Unsupported, UnsupportedLayer);
- try
- {
- test_dldt_fused_output(backend, target);
- }
- catch (const std::exception& e)
- {
- ADD_FAILURE() << "Exception: " << e.what();
- }
- catch(...)
- {
- ADD_FAILURE() << "Unknown exception";
- }
- LayerFactory::unregisterLayer("Unsupported");
- }
- TEST_P(Test_DLDT_layers, multiple_networks)
- {
- Net nets[2];
- for (int i = 0; i < 2; ++i)
- {
- nets[i].setInputsNames(std::vector<String>(1, format("input_%d", i)));
- LayerParams lp;
- lp.set("kernel_size", 1);
- lp.set("num_output", 1);
- lp.set("bias_term", false);
- lp.type = "Convolution";
- lp.name = format("testConv_%d", i);
- lp.blobs.push_back(Mat({1, 1, 1, 1}, CV_32F, Scalar(1 + i)));
- nets[i].addLayerToPrev(lp.name, lp.type, lp);
- nets[i].setPreferableBackend(backend);
- nets[i].setPreferableTarget(target);
- nets[i].setInput(Mat({1, 1, 2, 3}, CV_32FC1, Scalar(1)));
- }
- Mat out_1 = nets[0].forward();
- Mat out_2 = nets[1].forward();
- // After the second model is initialized we try to receive an output from the first network again.
- out_1 = nets[0].forward();
- normAssert(2 * out_1, out_2);
- }
- INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_DLDT_layers, dnnBackendsAndTargets());
- #endif // HAVE_INF_ENGINE
- // Test a custom layer.
- class CustomInterpLayer CV_FINAL : public Layer
- {
- public:
- CustomInterpLayer(const LayerParams ¶ms) : Layer(params)
- {
- zoomFactor = params.get<int>("zoom_factor", 0);
- outWidth = params.get<int>("width", 0);
- outHeight = params.get<int>("height", 0);
- }
- static Ptr<Layer> create(LayerParams& params)
- {
- return Ptr<Layer>(new CustomInterpLayer(params));
- }
- virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
- const int requiredOutputs,
- std::vector<std::vector<int> > &outputs,
- std::vector<std::vector<int> > &internals) const CV_OVERRIDE
- {
- const int batchSize = inputs[0][0];
- const int numChannels = inputs[0][1];
- const int inpHeight = inputs[0][2];
- const int inpWidth = inputs[0][3];
- std::vector<int> outShape(4);
- outShape[0] = batchSize;
- outShape[1] = numChannels;
- outShape[2] = outHeight != 0 ? outHeight : (inpHeight + (inpHeight - 1) * (zoomFactor - 1));
- outShape[3] = outWidth != 0 ? outWidth : (inpWidth + (inpWidth - 1) * (zoomFactor - 1));
- outputs.assign(1, outShape);
- return false;
- }
- virtual void finalize(InputArrayOfArrays, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
- {
- std::vector<Mat> outputs;
- outputs_arr.getMatVector(outputs);
- if (!outWidth && !outHeight)
- {
- outHeight = outputs[0].size[2];
- outWidth = outputs[0].size[3];
- }
- }
- // Implementation of this custom layer is based on https://github.com/cdmh/deeplab-public/blob/master/src/caffe/layers/interp_layer.cpp
- void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
- {
- CV_TRACE_FUNCTION();
- CV_TRACE_ARG_VALUE(name, "name", name.c_str());
- if (inputs_arr.depth() == CV_16S)
- {
- forward_fallback(inputs_arr, outputs_arr, internals_arr);
- return;
- }
- std::vector<Mat> inputs, outputs;
- inputs_arr.getMatVector(inputs);
- outputs_arr.getMatVector(outputs);
- Mat& inp = inputs[0];
- Mat& out = outputs[0];
- const float* inpData = (float*)inp.data;
- float* outData = (float*)out.data;
- const int batchSize = inp.size[0];
- const int numChannels = inp.size[1];
- const int inpHeight = inp.size[2];
- const int inpWidth = inp.size[3];
- const float rheight = (outHeight > 1) ? static_cast<float>(inpHeight - 1) / (outHeight - 1) : 0.f;
- const float rwidth = (outWidth > 1) ? static_cast<float>(inpWidth - 1) / (outWidth - 1) : 0.f;
- for (int h2 = 0; h2 < outHeight; ++h2)
- {
- const float h1r = rheight * h2;
- const int h1 = h1r;
- const int h1p = (h1 < inpHeight - 1) ? 1 : 0;
- const float h1lambda = h1r - h1;
- const float h0lambda = 1.f - h1lambda;
- for (int w2 = 0; w2 < outWidth; ++w2)
- {
- const float w1r = rwidth * w2;
- const int w1 = w1r;
- const int w1p = (w1 < inpWidth - 1) ? 1 : 0;
- const float w1lambda = w1r - w1;
- const float w0lambda = 1.f - w1lambda;
- const float* pos1 = inpData + h1 * inpWidth + w1;
- float* pos2 = outData + h2 * outWidth + w2;
- for (int c = 0; c < batchSize * numChannels; ++c)
- {
- pos2[0] =
- h0lambda * (w0lambda * pos1[0] + w1lambda * pos1[w1p]) +
- h1lambda * (w0lambda * pos1[h1p * inpWidth] + w1lambda * pos1[h1p * inpWidth + w1p]);
- pos1 += inpWidth * inpHeight;
- pos2 += outWidth * outHeight;
- }
- }
- }
- }
- private:
- int outWidth, outHeight, zoomFactor;
- };
- #ifndef OPENCV_DNN_EXTERNAL_PROTOBUF
- TEST_P(Test_Caffe_layers, Interp)
- #else
- TEST_P(Test_Caffe_layers, DISABLED_Interp) // requires patched protobuf (available in OpenCV source tree only)
- #endif
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception
- #endif
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
- // Test a custom layer.
- CV_DNN_REGISTER_LAYER_CLASS(Interp, CustomInterpLayer);
- try
- {
- testLayerUsingCaffeModels("layer_interp", false, false);
- }
- catch (...)
- {
- LayerFactory::unregisterLayer("Interp");
- throw;
- }
- LayerFactory::unregisterLayer("Interp");
- // Test an implemented layer.
- testLayerUsingCaffeModels("layer_interp", false, false);
- }
- INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_Caffe_layers, dnnBackendsAndTargets());
- TEST(Layer_Test_PoolingIndices, Accuracy)
- {
- Net net;
- LayerParams lp;
- lp.set("pool", "max");
- lp.set("kernel_w", 2);
- lp.set("kernel_h", 2);
- lp.set("stride_w", 2);
- lp.set("stride_h", 2);
- lp.set("pad_w", 0);
- lp.set("pad_h", 0);
- lp.name = "testLayer.name"; // This test also checks that OpenCV lets use names with dots.
- lp.type = "Pooling";
- net.addLayerToPrev(lp.name, lp.type, lp);
- Mat inp(10, 10, CV_8U);
- randu(inp, 0, 255);
- Mat maxValues(5, 5, CV_32F, Scalar(-1)), indices(5, 5, CV_32F, Scalar(-1));
- for (int y = 0; y < 10; ++y)
- {
- int dstY = y / 2;
- for (int x = 0; x < 10; ++x)
- {
- int dstX = x / 2;
- uint8_t val = inp.at<uint8_t>(y, x);
- if ((float)inp.at<uint8_t>(y, x) > maxValues.at<float>(dstY, dstX))
- {
- maxValues.at<float>(dstY, dstX) = val;
- indices.at<float>(dstY, dstX) = y * 10 + x;
- }
- }
- }
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- net.setInput(blobFromImage(inp));
- std::vector<Mat> outputs;
- net.forward(outputs, lp.name);
- normAssert(maxValues, outputs[0].reshape(1, 5));
- normAssert(indices, outputs[1].reshape(1, 5));
- }
- typedef testing::TestWithParam<tuple<Vec4i, int, tuple<Backend, Target> > > Layer_Test_ShuffleChannel;
- TEST_P(Layer_Test_ShuffleChannel, Accuracy)
- {
- Vec4i inpShapeVec = get<0>(GetParam());
- int group = get<1>(GetParam());
- ASSERT_EQ(inpShapeVec[1] % group, 0);
- const int groupSize = inpShapeVec[1] / group;
- int backendId = get<0>(get<2>(GetParam()));
- int targetId = get<1>(get<2>(GetParam()));
- Net net;
- LayerParams lp;
- lp.set("group", group);
- lp.type = "ShuffleChannel";
- lp.name = "testLayer";
- net.addLayerToPrev(lp.name, lp.type, lp);
- const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]};
- Mat inp(4, inpShape, CV_32F);
- randu(inp, 0, 255);
- net.setInput(inp);
- net.setPreferableBackend(backendId);
- net.setPreferableTarget(targetId);
- Mat out = net.forward();
- double l1 = 1e-5, lInf = 1e-4;
- if (targetId == DNN_TARGET_OPENCL_FP16)
- {
- l1 = 5e-2;
- lInf = 7e-2;
- }
- else if (targetId == DNN_TARGET_CUDA_FP16)
- {
- l1 = 0.06;
- lInf = 0.07;
- }
- for (int n = 0; n < inpShapeVec[0]; ++n)
- {
- for (int c = 0; c < inpShapeVec[1]; ++c)
- {
- Mat outChannel = getPlane(out, n, c);
- Mat inpChannel = getPlane(inp, n, groupSize * (c % group) + c / group);
- normAssert(outChannel, inpChannel, "", l1, lInf);
- }
- }
- }
- INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_ShuffleChannel, Combine(
- /*input shape*/ Values(Vec4i(1, 6, 5, 7), Vec4i(3, 12, 1, 4)),
- /*group*/ Values(1, 2, 3, 6), dnnBackendsAndTargets(/*with IE*/ false)
- ));
- // Check if relu is not fused to convolution if we requested it's output
- TEST(Layer_Test_Convolution, relu_fusion)
- {
- Net net;
- {
- LayerParams lp;
- lp.set("kernel_size", 1);
- lp.set("num_output", 1);
- lp.set("bias_term", false);
- lp.type = "Convolution";
- lp.name = "testConv";
- int weightsShape[] = {1, 1, 1, 1};
- Mat weights(4, &weightsShape[0], CV_32F, Scalar(1));
- lp.blobs.push_back(weights);
- net.addLayerToPrev(lp.name, lp.type, lp);
- }
- {
- LayerParams lp;
- lp.type = "ReLU";
- lp.name = "testReLU";
- net.addLayerToPrev(lp.name, lp.type, lp);
- }
- int sz[] = {1, 1, 2, 3};
- Mat input(4, &sz[0], CV_32F);
- randu(input, -1.0, -0.1);
- net.setInput(input);
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- Mat output = net.forward("testConv");
- normAssert(input, output);
- }
- typedef testing::TestWithParam<tuple<bool, tuple<Backend, Target> > > Layer_Test_Eltwise_unequal;
- TEST_P(Layer_Test_Eltwise_unequal, accuracy_input_0_truncate)
- {
- bool weighted = get<0>(GetParam());
- int backendId = get<0>(get<1>(GetParam()));
- int targetId = get<1>(get<1>(GetParam()));
- if (backendId == DNN_BACKEND_CUDA && weighted)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
- Net net;
- LayerParams lp;
- lp.type = "Eltwise";
- lp.name = "testLayer";
- lp.set<std::string>("output_channels_mode", "input_0_truncate");
- const int inpShapes[][4] = {{1, 4, 2, 2}, {1, 5, 2, 2}, {1, 3, 2, 2}};
- const int out_channels = inpShapes[0][1];
- std::vector<String> inpNames(3);
- std::vector<Mat> inputs(3);
- std::vector<float> weights(3, 1);
- if (weighted)
- {
- for (int i = 0; i < inputs.size(); ++i)
- weights[i] = -0.125f + i * 0.25f;
- lp.set("coeff", DictValue::arrayReal<float*>(&weights[0], weights.size()));
- }
- int eltwiseId = net.addLayer(lp.name, lp.type, lp);
- for (int i = 0; i < inputs.size(); ++i)
- {
- inputs[i].create(4, inpShapes[i], CV_32F);
- size_t total = inputs[i].total();
- for (size_t j = 0; j < total; j++)
- inputs[i].ptr<float>()[j] = j + i * 100;
- inpNames[i] = format("input_%d", i);
- net.connect(0, i, eltwiseId, i);
- }
- Mat ref(4, inpShapes[0], CV_32F, Scalar(0));
- net.setInputsNames(inpNames);
- for (int i = 0; i < inputs.size(); ++i)
- {
- //std::cout << ref.reshape(1,1) << endl;
- net.setInput(inputs[i], inpNames[i]);
- for (size_t batchId = 0; batchId < ref.size[0]; batchId++)
- {
- int input_channels = inputs[i].size[1];
- Range ranges[4] = { Range(batchId, batchId + 1), Range(0, std::min(out_channels, input_channels)), Range::all(), Range::all() };
- Mat ref_slice = ref(ranges);
- Mat input_slice = inputs[i](ranges);
- ref_slice += weights[i] * input_slice;
- }
- }
- net.setPreferableBackend(backendId);
- net.setPreferableTarget(targetId);
- Mat out = net.forward();
- normAssert(out, ref);
- if (testing::Test::HasFailure())
- {
- std::cout << out.reshape(1,1) << endl;
- std::cout << ref.reshape(1,1) << endl;
- }
- }
- TEST_P(Layer_Test_Eltwise_unequal, accuracy_input_0)
- {
- bool weighted = get<0>(GetParam());
- int backendId = get<0>(get<1>(GetParam()));
- int targetId = get<1>(get<1>(GetParam()));
- Net net;
- LayerParams lp;
- lp.type = "Eltwise";
- lp.name = "testLayer";
- lp.set<std::string>("output_channels_mode", "input_0");
- if (backendId == DNN_BACKEND_CUDA && weighted)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
- const int inpShapes[][4] = {{1, 4, 2, 2}, {1, 2, 2, 2}, {1, 3, 2, 2}};
- const int out_channels = inpShapes[0][1];
- std::vector<String> inpNames(3);
- std::vector<Mat> inputs(3);
- std::vector<float> weights(3, 1);
- if (weighted)
- {
- for (int i = 0; i < inputs.size(); ++i)
- weights[i] = -0.125f + i * 0.25f;
- lp.set("coeff", DictValue::arrayReal<float*>(&weights[0], weights.size()));
- }
- int eltwiseId = net.addLayer(lp.name, lp.type, lp);
- for (int i = 0; i < inputs.size(); ++i)
- {
- inputs[i].create(4, inpShapes[i], CV_32F);
- size_t total = inputs[i].total();
- for (size_t j = 0; j < total; j++)
- inputs[i].ptr<float>()[j] = j + i * 100;
- inpNames[i] = format("input_%d", i);
- net.connect(0, i, eltwiseId, i);
- }
- Mat ref(4, inpShapes[0], CV_32F, Scalar(0));
- net.setInputsNames(inpNames);
- for (int i = 0; i < inputs.size(); ++i)
- {
- //std::cout << ref.reshape(1,1) << endl;
- net.setInput(inputs[i], inpNames[i]);
- for (size_t batchId = 0; batchId < ref.size[0]; batchId++)
- {
- int input_channels = inputs[i].size[1];
- Range ranges[4] = { Range(batchId, batchId + 1), Range(0, std::min(out_channels, input_channels)), Range::all(), Range::all() };
- Mat ref_slice = ref(ranges);
- Mat input_slice = inputs[i](ranges);
- ref_slice += weights[i] * input_slice;
- }
- }
- net.setPreferableBackend(backendId);
- net.setPreferableTarget(targetId);
- Mat out = net.forward();
- normAssert(out, ref);
- if (testing::Test::HasFailure())
- {
- std::cout << out.reshape(1,1) << endl;
- std::cout << ref.reshape(1,1) << endl;
- }
- }
- INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Eltwise_unequal, Combine(
- testing::Bool(),
- dnnBackendsAndTargets()
- ));
- typedef testing::TestWithParam<tuple<Backend, Target> > Layer_Test_Resize;
- TEST_P(Layer_Test_Resize, change_input)
- {
- int backendId = get<0>(GetParam());
- int targetId = get<1>(GetParam());
- Net net;
- LayerParams lp;
- lp.type = "Resize";
- lp.name = "testLayer";
- lp.set("zoom_factor", 2);
- lp.set("interpolation", "nearest");
- net.addLayerToPrev(lp.name, lp.type, lp);
- for (int i = 0; i < 2; ++i)
- {
- Mat inp(4 + i, 5 + i, CV_8UC3), ref;
- randu(inp, 0, 255);
- resize(inp, ref, Size(0, 0), 2, 2, INTER_NEAREST);
- ref = blobFromImage(ref);
- net.setInput(blobFromImage(inp));
- net.setPreferableBackend(backendId);
- net.setPreferableTarget(targetId);
- Mat out = net.forward();
- normAssert(out, ref);
- }
- }
- INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Resize, dnnBackendsAndTargets());
- struct Layer_Test_Slice : public testing::TestWithParam<tuple<Backend, Target> >
- {
- template<int DIMS>
- void test_slice(const int* inputShape, const int* begin, const int* end)
- {
- int backendId = get<0>(GetParam());
- int targetId = get<1>(GetParam());
- Mat input(DIMS, inputShape, CV_32FC1, Scalar::all(0));
- for (int i = 0; i < (int)input.total(); ++i)
- input.ptr<float>()[i] = (float)i;
- std::vector<Range> range(DIMS);
- for (int i = 0; i < DIMS; ++i)
- range[i] = Range(begin[i], end[i]);
- Net net;
- LayerParams lp;
- lp.type = "Slice";
- lp.name = "testLayer";
- lp.set("begin", DictValue::arrayInt<int*>((int*)&begin[0], DIMS));
- lp.set("end", DictValue::arrayInt<int*>((int*)&end[0], DIMS));
- net.addLayerToPrev(lp.name, lp.type, lp);
- {
- net.setInput(input);
- net.setPreferableBackend(backendId);
- net.setPreferableTarget(targetId);
- Mat out = net.forward();
- EXPECT_GT(cv::norm(out, NORM_INF), 0);
- normAssert(out, input(range));
- #if 0
- cout << input(range).clone().reshape(1, 1) << endl;
- cout << out.reshape(1, 1) << endl;
- #endif
- }
- }
- };
- TEST_P(Layer_Test_Slice, slice_channels_17762)
- {
- const int inputShape[4] = {1, 16, 6, 8};
- const int begin[] = {0, 4, 0, 0};
- const int end[] = {1, 8, 6, 8};
- test_slice<4>(inputShape, begin, end);
- }
- TEST_P(Layer_Test_Slice, slice_channels_with_batch_17762)
- {
- const int inputShape[4] = {4, 4, 3, 4};
- const int begin[] = {0, 1, 0, 0};
- const int end[] = {4, 3, 3, 4};
- test_slice<4>(inputShape, begin, end);
- }
- TEST_P(Layer_Test_Slice, slice_channels_and_batch_17762)
- {
- int backend = get<0>(GetParam());
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- const int inputShape[4] = {4, 4, 3, 4};
- const int begin[] = {2, 1, 0, 0};
- const int end[] = {4, 3, 3, 4};
- test_slice<4>(inputShape, begin, end);
- }
- TEST_P(Layer_Test_Slice, slice_rows)
- {
- const int inputShape[4] = {1, 2, 6, 4};
- const int begin[] = {0, 0, 4, 0};
- const int end[] = {1, 2, 6, 4};
- test_slice<4>(inputShape, begin, end);
- }
- TEST_P(Layer_Test_Slice, slice_cols)
- {
- const int inputShape[4] = {1, 2, 3, 8};
- const int begin[] = {0, 0, 0, 4};
- const int end[] = {1, 2, 3, 8};
- test_slice<4>(inputShape, begin, end);
- }
- TEST_P(Layer_Test_Slice, slice_complex_1_unaligned)
- {
- const int inputShape[4] = {1, 4, 2, 3};
- const int begin[] = {0, 2, 1, 0};
- const int end[] = {1, 3, 2, 2};
- test_slice<4>(inputShape, begin, end);
- }
- TEST_P(Layer_Test_Slice, slice_complex_2_x4)
- {
- const int inputShape[4] = {1, 3, 2, 4};
- const int begin[] = {0, 2, 1, 0};
- const int end[] = {1, 3, 2, 2};
- test_slice<4>(inputShape, begin, end);
- }
- TEST_P(Layer_Test_Slice, slice_complex_3)
- {
- const int inputShape[4] = {1, 6, 4, 8};
- const int begin[] = {0, 2, 1, 4};
- const int end[] = {1, 4, 3, 8};
- test_slice<4>(inputShape, begin, end);
- }
- TEST_P(Layer_Test_Slice, variable_input_shape)
- {
- int backendId = get<0>(GetParam());
- int targetId = get<1>(GetParam());
- int begin[] = {0, 0, 0, 0};
- int end[] = {-1, -1, -1, -1};
- Net net;
- LayerParams lp;
- lp.type = "Slice";
- lp.name = "testLayer";
- lp.set("begin", DictValue::arrayInt<int*>(&begin[0], 4));
- lp.set("end", DictValue::arrayInt<int*>(&end[0], 4));
- net.addLayerToPrev(lp.name, lp.type, lp);
- for (int i = 0; i < 2; ++i)
- {
- Mat inp(4 + i, 5 + i, CV_8UC1);
- randu(inp, 0, 255);
- inp = blobFromImage(inp);
- net.setInput(inp);
- net.setPreferableBackend(backendId);
- net.setPreferableTarget(targetId);
- Mat out = net.forward();
- normAssert(out, inp);
- }
- }
- INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Slice, dnnBackendsAndTargets());
- typedef testing::TestWithParam<tuple<Backend, Target> > Layer_Test_BatchNorm;
- TEST_P(Layer_Test_BatchNorm, fusion)
- {
- // This tests reinitializes network by forwarding different batch size input.
- // We check BatchNorm layer weights restoring after fusion.
- int backendId = get<0>(GetParam());
- int targetId = get<1>(GetParam());
- const int ch = 4;
- Mat mean(1, ch, CV_32F), var(1, ch, CV_32F), weights(1, ch, CV_32F);
- randu(mean, 0, 1);
- randu(var, 0, 1);
- randu(weights, 0, 1);
- Net net;
- {
- LayerParams lp;
- lp.type = "BatchNorm";
- lp.name = "bn";
- lp.set("has_weight", false);
- lp.set("has_bias", false);
- lp.blobs.push_back(mean);
- lp.blobs.push_back(var);
- net.addLayerToPrev(lp.name, lp.type, lp);
- }
- {
- LayerParams lp;
- lp.type = "Scale";
- lp.name = "scale";
- lp.set("has_bias", false);
- lp.blobs.push_back(weights);
- net.addLayerToPrev(lp.name, lp.type, lp);
- }
- Mat inp(4, 5, CV_32FC(ch));
- randu(inp, 0, 1);
- net.setPreferableBackend(backendId);
- net.setPreferableTarget(targetId);
- net.setInput(blobFromImage(inp));
- Mat ref = net.forward();
- net.setInput(blobFromImages(std::vector<Mat>(2, inp)));
- Mat out = net.forward();
- for (int i = 0; i < 2; ++i)
- {
- std::vector<Range> ranges(4, Range::all());
- ranges[0].start = i;
- ranges[0].end = i + 1;
- normAssert(out(ranges), ref);
- }
- }
- INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_BatchNorm, dnnBackendsAndTargets());
- class TestLayerFusion : public DNNTestLayer {
- public:
- static void makeDefaultTestConvolutionLayer(LayerParams& convParams, int in_channels, int num_filters, bool bias_term)
- {
- const int kernel_h = 3, kernel_w = 3;
- const int pad_h = kernel_h / 2, pad_w = kernel_w / 2;
- convParams.set("kernel_h", kernel_h);
- convParams.set("kernel_w", kernel_w);
- convParams.set("pad_h", pad_h);
- convParams.set("pad_w", pad_w);
- convParams.set("num_output", num_filters);
- convParams.set("bias_term", bias_term);
- convParams.type = "Convolution";
- convParams.name = "convolution";
- float conv_init_magnitude = 1.0f / in_channels / kernel_h / kernel_w;
- int weightsShape[] = {num_filters, in_channels, kernel_h, kernel_w};
- Mat weights(4, &weightsShape[0], CV_32F);
- randu(weights, -conv_init_magnitude, conv_init_magnitude);
- convParams.blobs.push_back(weights);
- if (bias_term)
- {
- Mat bias(1, num_filters, CV_32F);
- randu(bias, -1.0f, 1.0f);
- convParams.blobs.push_back(bias);
- }
- }
- static void makeDefaultTestActivationLayer(LayerParams& activationParams, const std::string& type, int in_channels)
- {
- activationParams.type = type;
- activationParams.name = "activation";
- if (activationParams.type == "ReLU")
- activationParams.set("negative_slope", 0.1f);
- else if (activationParams.type == "Power")
- {
- activationParams.set("power", 2.0f);
- activationParams.set("scale", 0.5f);
- activationParams.set("shift", 0.3f);
- }
- else if (activationParams.type == "ReLU6")
- {
- activationParams.set("min_value", -1.0f);
- activationParams.set("max_value", 1.0f);
- }
- else if (activationParams.type == "ChannelsPReLU")
- {
- Mat scales(1, in_channels, CV_32F);
- randu(scales, -1.0f, 1.0f);
- activationParams.blobs.push_back(scales);
- }
- else if (activationParams.type == "Exp")
- {
- activationParams.set("base", -1.0f);
- activationParams.set("scale", 0.3f);
- activationParams.set("shift", 0.6f);
- }
- }
- static void makeDefaultTestEltwiseLayer(LayerParams& eltwiseParams, const std::string& op, bool withCoefficients)
- {
- eltwiseParams.type = "Eltwise";
- eltwiseParams.name = "eltwise";
- eltwiseParams.set("operation", op);
- if (withCoefficients)
- {
- float coeff[] = {0.3f, 0.5f};
- eltwiseParams.set("coeff", DictValue::arrayReal<float*>(coeff, 2));
- }
- }
- static void test(Mat& input, Net& net, Backend backendId, Target targetId, std::vector<int> expectedFusedLayers = std::vector<int>(), double l1 = 0.0, double lInf = 0.0)
- {
- DNNTestLayer::checkBackend(backendId, targetId);
- net.enableFusion(false);
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- net.setPreferableTarget(DNN_TARGET_CPU);
- net.setInput(input);
- Mat outputReference = net.forward().clone();
- std::vector<double> refTimings;
- net.getPerfProfile(refTimings);
- for (int i = 0; i < refTimings.size(); i++)
- {
- CV_Assert(refTimings[i] != 0.0);
- }
- net.enableFusion(true);
- net.setPreferableBackend(backendId);
- net.setPreferableTarget(targetId);
- net.setInput(input);
- Mat outputTest = net.forward().clone();
- std::vector<double> testTimings;
- net.getPerfProfile(testTimings);
- for (int i = 0; i < testTimings.size(); i++)
- {
- if(std::find(expectedFusedLayers.begin(), expectedFusedLayers.end(), i + 1) != expectedFusedLayers.end())
- {
- EXPECT_EQ(testTimings[i], 0.0);
- }
- else
- {
- EXPECT_NE(testTimings[i], 0.0);
- }
- }
- // double ref_max_value, ref_min_value;
- // minMaxLoc(outputReference.reshape(1, 1), &ref_min_value, &ref_max_value);
- // std::cout << "reference range: " << ref_min_value << ' ' << ref_max_value << std::endl;
- double default_l1, default_lInf;
- DNNTestLayer::getDefaultThresholds(backendId, targetId, &default_l1, &default_lInf);
- if (l1 == 0.0)
- l1 = default_l1;
- if (lInf == 0.0)
- lInf = default_lInf;
- normAssert(outputReference, outputTest, "", l1, lInf);
- }
- static testing::internal::ParamGenerator<std::string> eltwiseOpList()
- {
- // TODO: automate list generation
- return Values("sum", "max", "min", "prod", "div");
- }
- static testing::internal::ParamGenerator<std::string> activationLayersList()
- {
- // TODO: automate list generation
- return Values("ReLU", "ReLU6", "ChannelsPReLU", "TanH", "Swish", "Mish", "Sigmoid", "ELU", "AbsVal", "BNLL", "Power", "Exp");
- }
- static testing::internal::ParamGenerator<tuple<Backend, Target> > dnnBackendsAndTargetsForFusionTests()
- {
- return dnnBackendsAndTargets(false, false, true, false, true, false); // OCV OpenCL + OCV CPU + CUDA
- }
- };
- typedef TestWithParam<tuple<bool, std::string, tuple<Backend, Target> > > ConvolutionActivationFusion;
- TEST_P(ConvolutionActivationFusion, Accuracy)
- {
- // input
- // |
- // -----------------------
- // | convolution |
- // -----------------------
- // |
- // -----------------------
- // | activation |
- // -----------------------
- // |
- // output
- const int batch_size = 2, in_channels = 16;
- const int in_height = 16, in_width = 16;
- int inputShape[] = {batch_size, in_channels, in_height, in_width};
- Mat input(4, &inputShape[0], CV_32F);
- randu(input, 1.0f, 2.0f);
- bool bias_term = get<0>(GetParam());
- LayerParams convParams;
- TestLayerFusion::makeDefaultTestConvolutionLayer(convParams, in_channels, in_channels, bias_term);
- std::string actType = get<1>(GetParam());
- LayerParams activationParams;
- TestLayerFusion::makeDefaultTestActivationLayer(activationParams, actType, in_channels);
- Backend backendId = get<0>(get<2>(GetParam()));
- Target targetId = get<1>(get<2>(GetParam()));
- Net net;
- int convId = net.addLayer(convParams.name, convParams.type, convParams);
- int activId = net.addLayerToPrev(activationParams.name, activationParams.type, activationParams);
- net.connect(0, 0, convId, 0);
- std::vector<int> expectedFusedLayers;
- if (backendId == DNN_BACKEND_OPENCV)
- {
- if (targetId == DNN_TARGET_CPU)
- expectedFusedLayers.push_back(activId); // all activations are fused
- else if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16)
- {
- if (actType == "ReLU" || actType == "ChannelsPReLU" || actType == "ReLU6" || actType == "TanH" /*|| actType == "Power"*/)
- expectedFusedLayers.push_back(activId);
- }
- }
- else if (backendId == DNN_BACKEND_CUDA)
- {
- if (actType == "ReLU" || actType == "ReLU6" || actType == "TanH" || actType == "Swish" ||
- actType == "Mish" || actType == "Sigmoid" || actType == "Power")
- expectedFusedLayers.push_back(activId);
- }
- TestLayerFusion::test(input, net, backendId, targetId, expectedFusedLayers);
- }
- INSTANTIATE_TEST_CASE_P(TestLayerFusion, ConvolutionActivationFusion, Combine(
- /* bias */ testing::Bool(),
- /* activation */ TestLayerFusion::activationLayersList(),
- TestLayerFusion::dnnBackendsAndTargetsForFusionTests()
- ));
- typedef TestWithParam<tuple<bool, std::string, bool, tuple<Backend, Target> > > ConvolutionEltwiseFusion;
- TEST_P(ConvolutionEltwiseFusion, Accuracy)
- {
- // input
- // |
- // -------------------------------
- // | |
- // | ---------------
- // | | convolution |
- // | ---------------
- // | |
- // | ---------------- |
- // --------| eltwise op |-------
- // ----------------
- // |
- // output
- const int batch_size = 2, in_channels = 16;
- const int in_height = 16, in_width = 16;
- int inputShape[] = {batch_size, in_channels, in_height, in_width};
- Mat input(4, &inputShape[0], CV_32F);
- randu(input, 1.0f, 2.0f); // avoid small values to test eltwise div
- bool bias_term = get<0>(GetParam());
- LayerParams convParams;
- TestLayerFusion::makeDefaultTestConvolutionLayer(convParams, in_channels, in_channels, bias_term);
- std::string eltwiseOp = get<1>(GetParam());
- bool weightedEltwise = get<2>(GetParam());
- if (eltwiseOp != "sum" && weightedEltwise)
- throw SkipTestException("weighted eltwise not supported");
- LayerParams eltwiseParams;
- TestLayerFusion::makeDefaultTestEltwiseLayer(eltwiseParams, eltwiseOp, weightedEltwise);
- Net net;
- int convId = net.addLayer(convParams.name, convParams.type, convParams);
- int eltwiseId = net.addLayer(eltwiseParams.name, eltwiseParams.type, eltwiseParams);
- net.connect(0, 0, convId, 0);
- net.connect(convId, 0, eltwiseId, 0);
- net.connect(0, 0, eltwiseId, 1);
- Backend backendId = get<0>(get<3>(GetParam()));
- Target targetId = get<1>(get<3>(GetParam()));
- std::vector<int> expectedFusedLayers;
- if (backendId == DNN_BACKEND_CUDA && eltwiseOp == "sum" && !weightedEltwise)
- expectedFusedLayers.push_back(eltwiseId);
- TestLayerFusion::test(input, net, backendId, targetId, expectedFusedLayers);
- }
- INSTANTIATE_TEST_CASE_P(TestLayerFusion, ConvolutionEltwiseFusion, Combine(
- /* bias */ testing::Bool(),
- /* eltwise op */ TestLayerFusion::eltwiseOpList(),
- /* eltwise weighted */ testing::Bool(),
- TestLayerFusion::dnnBackendsAndTargetsForFusionTests()
- ));
- typedef TestWithParam<tuple<bool, std::string, bool, std::string, tuple<Backend, Target> > > ConvolutionEltwiseActivationFusion;
- TEST_P(ConvolutionEltwiseActivationFusion, Accuracy)
- {
- // input
- // |
- // -------------------------------
- // | |
- // | ---------------
- // | | convolution |
- // | ---------------
- // | |
- // | ---------------- |
- // --------| eltwise op |-------
- // ----------------
- // |
- // ----------------
- // | activation |
- // ----------------
- // |
- // output
- const int batch_size = 2, in_channels = 16;
- const int in_height = 16, in_width = 16;
- int inputShape[] = {batch_size, in_channels, in_height, in_width};
- Mat input(4, &inputShape[0], CV_32F);
- randu(input, 1.0f, 2.0f); // avoid small values to test eltwise div
- bool bias_term = get<0>(GetParam());
- LayerParams convParams;
- TestLayerFusion::makeDefaultTestConvolutionLayer(convParams, in_channels, in_channels, bias_term);
- std::string eltwiseOp = get<1>(GetParam());
- bool weightedEltwise = get<2>(GetParam());
- if (eltwiseOp != "sum" && weightedEltwise)
- throw SkipTestException("weighted eltwise not supported");
- LayerParams eltwiseParams;
- TestLayerFusion::makeDefaultTestEltwiseLayer(eltwiseParams, eltwiseOp, weightedEltwise);
- std::string actType = get<3>(GetParam());
- LayerParams activationParams;
- TestLayerFusion::makeDefaultTestActivationLayer(activationParams, actType, in_channels);
- Backend backendId = get<0>(get<4>(GetParam()));
- Target targetId = get<1>(get<4>(GetParam()));
- Net net;
- int convId = net.addLayer(convParams.name, convParams.type, convParams);
- int eltwiseId = net.addLayer(eltwiseParams.name, eltwiseParams.type, eltwiseParams);
- int activId = net.addLayer(activationParams.name, activationParams.type, activationParams);
- net.connect(0, 0, convId, 0);
- net.connect(convId, 0, eltwiseId, 0);
- net.connect(0, 0, eltwiseId, 1);
- net.connect(eltwiseId, 0, activId, 0);
- std::vector<int> expectedFusedLayers;
- if (backendId == DNN_BACKEND_OPENCV)
- {
- if (targetId == DNN_TARGET_CPU)
- expectedFusedLayers.push_back(activId); // activation is fused with eltwise layer
- else if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16)
- {
- if (eltwiseOp == "sum" && !weightedEltwise &&
- (actType == "ReLU" || actType == "ChannelsPReLU" /*|| actType == "Power"*/)
- )
- {
- expectedFusedLayers.push_back(eltwiseId);
- expectedFusedLayers.push_back(activId);
- }
- }
- }
- else if(backendId == DNN_BACKEND_CUDA)
- {
- if (eltwiseOp == "sum" && !weightedEltwise)
- {
- expectedFusedLayers.push_back(eltwiseId);
- if (actType == "ReLU" || actType == "ReLU6" || actType == "TanH" || actType == "Swish" ||
- actType == "Mish" || actType == "Sigmoid" || actType == "Power")
- expectedFusedLayers.push_back(activId);
- }
- }
- TestLayerFusion::test(input, net, backendId, targetId, expectedFusedLayers);
- }
- INSTANTIATE_TEST_CASE_P(TestLayerFusion, ConvolutionEltwiseActivationFusion, Combine(
- /* bias */ testing::Bool(),
- /* eltwise op */ TestLayerFusion::eltwiseOpList(),
- /* eltwise weighted */ testing::Bool(),
- /* activation */ TestLayerFusion::activationLayersList(),
- TestLayerFusion::dnnBackendsAndTargetsForFusionTests()
- ));
- typedef TestWithParam<tuple<bool, std::string, std::string, bool, tuple<Backend, Target> > > ConvolutionActivationEltwiseFusion;
- TEST_P(ConvolutionActivationEltwiseFusion, Accuracy)
- {
- // input
- // |
- // -------------------------------
- // | |
- // | ----------------
- // | | convolution |
- // | ----------------
- // | |
- // | ----------------
- // | | activation |
- // | ----------------
- // | |
- // | ---------------- |
- // --------| eltwise sum |-------
- // ----------------
- // |
- const int batch_size = 2, in_channels = 16;
- const int in_height = 16, in_width = 16;
- int inputShape[] = {batch_size, in_channels, in_height, in_width};
- Mat input(4, &inputShape[0], CV_32F);
- randu(input, 1.0f, 2.0f); // avoid small values to test eltwise div
- bool bias_term = get<0>(GetParam());
- LayerParams convParams;
- TestLayerFusion::makeDefaultTestConvolutionLayer(convParams, in_channels, in_channels, bias_term);
- std::string actType = get<1>(GetParam());
- LayerParams activationParams;
- TestLayerFusion::makeDefaultTestActivationLayer(activationParams, actType, in_channels);
- std::string eltwiseOp = get<2>(GetParam());
- bool weightedEltwise = get<3>(GetParam());
- if (eltwiseOp != "sum" && weightedEltwise)
- throw SkipTestException("weighted eltwise not supported");
- LayerParams eltwiseParams;
- TestLayerFusion::makeDefaultTestEltwiseLayer(eltwiseParams, eltwiseOp, weightedEltwise);
- Backend backendId = get<0>(get<4>(GetParam()));
- Target targetId = get<1>(get<4>(GetParam()));
- Net net;
- int convId = net.addLayer(convParams.name, convParams.type, convParams);
- int activId = net.addLayer(activationParams.name, activationParams.type, activationParams);
- int eltwiseId = net.addLayer(eltwiseParams.name, eltwiseParams.type, eltwiseParams);
- net.connect(0, 0, convId, 0);
- net.connect(convId, 0, activId, 0);
- net.connect(activId, 0, eltwiseId, 0);
- net.connect(0, 0, eltwiseId, 1);
- std::vector<int> expectedFusedLayers;
- if (backendId == DNN_BACKEND_OPENCV)
- {
- if (targetId == DNN_TARGET_CPU)
- expectedFusedLayers.push_back(activId); // activation fused with convolution
- else if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16)
- {
- if (actType == "ReLU" || actType == "ChannelsPReLU" || actType == "ReLU6" || actType == "TanH" /*|| actType == "Power"*/)
- expectedFusedLayers.push_back(activId); // activation fused with convolution
- }
- }
- else if(backendId == DNN_BACKEND_CUDA)
- {
- if (actType == "ReLU" || actType == "ReLU6" || actType == "TanH" || actType == "Swish" ||
- actType == "Mish" || actType == "Sigmoid" || actType == "Power")
- {
- expectedFusedLayers.push_back(activId);
- if (eltwiseOp == "sum" && !weightedEltwise)
- expectedFusedLayers.push_back(eltwiseId);
- }
- }
- TestLayerFusion::test(input, net, backendId, targetId, expectedFusedLayers);
- }
- INSTANTIATE_TEST_CASE_P(TestLayerFusion, ConvolutionActivationEltwiseFusion, Combine(
- /* bias */ testing::Bool(),
- /* activation */ TestLayerFusion::activationLayersList(),
- /* eltwise op */ TestLayerFusion::eltwiseOpList(),
- /* eltwise weighted */ testing::Bool(),
- TestLayerFusion::dnnBackendsAndTargetsForFusionTests()
- ));
- }} // namespace
|