123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- //
- // Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- #include "test_precomp.hpp"
- #ifdef HAVE_INF_ENGINE
- #include <opencv2/core/utils/filesystem.hpp>
- //
- // Synchronize headers include statements with src/op_inf_engine.hpp
- //
- //#define INFERENCE_ENGINE_DEPRECATED // turn off deprecation warnings from IE
- //there is no way to suppress warnings from IE only at this moment, so we are forced to suppress warnings globally
- #if defined(__GNUC__)
- #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
- #endif
- #ifdef _MSC_VER
- #pragma warning(disable: 4996) // was declared deprecated
- #endif
- #if defined(__GNUC__)
- #pragma GCC visibility push(default)
- #endif
- #include <inference_engine.hpp>
- #include <ie_icnn_network.hpp>
- #include <ie_extension.h>
- #if defined(__GNUC__)
- #pragma GCC visibility pop
- #endif
- namespace opencv_test { namespace {
- static void initDLDTDataPath()
- {
- #ifndef WINRT
- static bool initialized = false;
- if (!initialized)
- {
- #if INF_ENGINE_RELEASE <= 2018050000
- const char* dldtTestDataPath = getenv("INTEL_CVSDK_DIR");
- if (dldtTestDataPath)
- cvtest::addDataSearchPath(dldtTestDataPath);
- #else
- const char* omzDataPath = getenv("OPENCV_OPEN_MODEL_ZOO_DATA_PATH");
- if (omzDataPath)
- cvtest::addDataSearchPath(omzDataPath);
- const char* dnnDataPath = getenv("OPENCV_DNN_TEST_DATA_PATH");
- if (dnnDataPath)
- cvtest::addDataSearchPath(std::string(dnnDataPath) + "/omz_intel_models");
- #endif
- initialized = true;
- }
- #endif
- }
- using namespace cv;
- using namespace cv::dnn;
- using namespace InferenceEngine;
- struct OpenVINOModelTestCaseInfo
- {
- const char* modelPathFP32;
- const char* modelPathFP16;
- };
- static const std::map<std::string, OpenVINOModelTestCaseInfo>& getOpenVINOTestModels()
- {
- static std::map<std::string, OpenVINOModelTestCaseInfo> g_models {
- #if INF_ENGINE_RELEASE >= 2018050000 && \
- INF_ENGINE_RELEASE <= 2020999999 // don't use IRv5 models with 2020.1+
- // layout is defined by open_model_zoo/model_downloader
- // Downloaded using these parameters for Open Model Zoo downloader (2019R1):
- // ./downloader.py -o ${OPENCV_DNN_TEST_DATA_PATH}/omz_intel_models --cache_dir ${OPENCV_DNN_TEST_DATA_PATH}/.omz_cache/ \
- // --name face-person-detection-retail-0002,face-person-detection-retail-0002-fp16,age-gender-recognition-retail-0013,age-gender-recognition-retail-0013-fp16,head-pose-estimation-adas-0001,head-pose-estimation-adas-0001-fp16,person-detection-retail-0002,person-detection-retail-0002-fp16,vehicle-detection-adas-0002,vehicle-detection-adas-0002-fp16
- { "age-gender-recognition-retail-0013", {
- "Retail/object_attributes/age_gender/dldt/age-gender-recognition-retail-0013",
- "Retail/object_attributes/age_gender/dldt/age-gender-recognition-retail-0013-fp16"
- }},
- { "face-person-detection-retail-0002", {
- "Retail/object_detection/face_pedestrian/rmnet-ssssd-2heads/0002/dldt/face-person-detection-retail-0002",
- "Retail/object_detection/face_pedestrian/rmnet-ssssd-2heads/0002/dldt/face-person-detection-retail-0002-fp16"
- }},
- { "head-pose-estimation-adas-0001", {
- "Transportation/object_attributes/headpose/vanilla_cnn/dldt/head-pose-estimation-adas-0001",
- "Transportation/object_attributes/headpose/vanilla_cnn/dldt/head-pose-estimation-adas-0001-fp16"
- }},
- { "person-detection-retail-0002", {
- "Retail/object_detection/pedestrian/hypernet-rfcn/0026/dldt/person-detection-retail-0002",
- "Retail/object_detection/pedestrian/hypernet-rfcn/0026/dldt/person-detection-retail-0002-fp16"
- }},
- { "vehicle-detection-adas-0002", {
- "Transportation/object_detection/vehicle/mobilenet-reduced-ssd/dldt/vehicle-detection-adas-0002",
- "Transportation/object_detection/vehicle/mobilenet-reduced-ssd/dldt/vehicle-detection-adas-0002-fp16"
- }},
- #endif
- #if INF_ENGINE_RELEASE >= 2020010000
- // Downloaded using these parameters for Open Model Zoo downloader (2020.1):
- // ./downloader.py -o ${OPENCV_DNN_TEST_DATA_PATH}/omz_intel_models --cache_dir ${OPENCV_DNN_TEST_DATA_PATH}/.omz_cache/ \
- // --name person-detection-retail-0013,age-gender-recognition-retail-0013
- { "person-detection-retail-0013", { // IRv10
- "intel/person-detection-retail-0013/FP32/person-detection-retail-0013",
- "intel/person-detection-retail-0013/FP16/person-detection-retail-0013"
- }},
- { "age-gender-recognition-retail-0013", {
- "intel/age-gender-recognition-retail-0013/FP16/age-gender-recognition-retail-0013",
- "intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013"
- }},
- #endif
- #if INF_ENGINE_RELEASE >= 2021020000
- // OMZ: 2020.2
- { "face-detection-0105", {
- "intel/face-detection-0105/FP32/face-detection-0105",
- "intel/face-detection-0105/FP16/face-detection-0105"
- }},
- { "face-detection-0106", {
- "intel/face-detection-0106/FP32/face-detection-0106",
- "intel/face-detection-0106/FP16/face-detection-0106"
- }},
- #endif
- #if INF_ENGINE_RELEASE >= 2021040000
- // OMZ: 2021.4
- { "person-vehicle-bike-detection-2004", {
- "intel/person-vehicle-bike-detection-2004/FP32/person-vehicle-bike-detection-2004",
- "intel/person-vehicle-bike-detection-2004/FP16/person-vehicle-bike-detection-2004"
- //"intel/person-vehicle-bike-detection-2004/FP16-INT8/person-vehicle-bike-detection-2004"
- }},
- #endif
- };
- return g_models;
- }
- static const std::vector<std::string> getOpenVINOTestModelsList()
- {
- std::vector<std::string> result;
- const std::map<std::string, OpenVINOModelTestCaseInfo>& models = getOpenVINOTestModels();
- for (const auto& it : models)
- result.push_back(it.first);
- return result;
- }
- inline static std::string getOpenVINOModel(const std::string &modelName, bool isFP16)
- {
- const std::map<std::string, OpenVINOModelTestCaseInfo>& models = getOpenVINOTestModels();
- const auto it = models.find(modelName);
- if (it != models.end())
- {
- OpenVINOModelTestCaseInfo modelInfo = it->second;
- if (isFP16 && modelInfo.modelPathFP16)
- return std::string(modelInfo.modelPathFP16);
- else if (!isFP16 && modelInfo.modelPathFP32)
- return std::string(modelInfo.modelPathFP32);
- }
- return std::string();
- }
- static inline void genData(const InferenceEngine::TensorDesc& desc, Mat& m, Blob::Ptr& dataPtr)
- {
- const std::vector<size_t>& dims = desc.getDims();
- if (desc.getPrecision() == InferenceEngine::Precision::FP32)
- {
- m.create(std::vector<int>(dims.begin(), dims.end()), CV_32F);
- randu(m, -1, 1);
- dataPtr = make_shared_blob<float>(desc, (float*)m.data);
- }
- else if (desc.getPrecision() == InferenceEngine::Precision::I32)
- {
- m.create(std::vector<int>(dims.begin(), dims.end()), CV_32S);
- randu(m, -100, 100);
- dataPtr = make_shared_blob<int>(desc, (int*)m.data);
- }
- else
- {
- FAIL() << "Unsupported precision: " << desc.getPrecision();
- }
- }
- void runIE(Target target, const std::string& xmlPath, const std::string& binPath,
- std::map<std::string, cv::Mat>& inputsMap, std::map<std::string, cv::Mat>& outputsMap)
- {
- SCOPED_TRACE("runIE");
- std::string device_name;
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2019010000)
- Core ie;
- #else
- InferenceEnginePluginPtr enginePtr;
- InferencePlugin plugin;
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2019030000)
- CNNNetwork net = ie.ReadNetwork(xmlPath, binPath);
- #else
- CNNNetReader reader;
- reader.ReadNetwork(xmlPath);
- reader.ReadWeights(binPath);
- CNNNetwork net = reader.getNetwork();
- #endif
- ExecutableNetwork netExec;
- InferRequest infRequest;
- try
- {
- switch (target)
- {
- case DNN_TARGET_CPU:
- device_name = "CPU";
- break;
- case DNN_TARGET_OPENCL:
- case DNN_TARGET_OPENCL_FP16:
- device_name = "GPU";
- break;
- case DNN_TARGET_MYRIAD:
- device_name = "MYRIAD";
- break;
- case DNN_TARGET_FPGA:
- device_name = "FPGA";
- break;
- default:
- CV_Error(Error::StsNotImplemented, "Unknown target");
- };
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2019010000)
- auto dispatcher = InferenceEngine::PluginDispatcher({""});
- enginePtr = dispatcher.getPluginByDevice(device_name);
- #endif
- if (target == DNN_TARGET_CPU || target == DNN_TARGET_FPGA)
- {
- std::string suffixes[] = {"_avx2", "_sse4", ""};
- bool haveFeature[] = {
- checkHardwareSupport(CPU_AVX2),
- checkHardwareSupport(CPU_SSE4_2),
- true
- };
- for (int i = 0; i < 3; ++i)
- {
- if (!haveFeature[i])
- continue;
- #ifdef _WIN32
- std::string libName = "cpu_extension" + suffixes[i] + ".dll";
- #elif defined(__APPLE__)
- std::string libName = "libcpu_extension" + suffixes[i] + ".dylib";
- #else
- std::string libName = "libcpu_extension" + suffixes[i] + ".so";
- #endif // _WIN32
- try
- {
- IExtensionPtr extension = make_so_pointer<IExtension>(libName);
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2019010000)
- ie.AddExtension(extension, device_name);
- #else
- enginePtr->AddExtension(extension, 0);
- #endif
- break;
- }
- catch(...) {}
- }
- // Some of networks can work without a library of extra layers.
- }
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2019010000)
- netExec = ie.LoadNetwork(net, device_name);
- #else
- plugin = InferencePlugin(enginePtr);
- netExec = plugin.LoadNetwork(net, {});
- #endif
- infRequest = netExec.CreateInferRequest();
- }
- catch (const std::exception& ex)
- {
- CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what()));
- }
- // Fill input blobs.
- inputsMap.clear();
- BlobMap inputBlobs;
- for (auto& it : net.getInputsInfo())
- {
- const InferenceEngine::TensorDesc& desc = it.second->getTensorDesc();
- genData(desc, inputsMap[it.first], inputBlobs[it.first]);
- if (cvtest::debugLevel > 0)
- {
- const std::vector<size_t>& dims = desc.getDims();
- std::cout << "Input: '" << it.first << "' precison=" << desc.getPrecision() << " dims=" << dims.size() << " [";
- for (auto d : dims)
- std::cout << " " << d;
- std::cout << "] ocv_mat=" << inputsMap[it.first].size << " of " << typeToString(inputsMap[it.first].type()) << std::endl;
- }
- }
- infRequest.SetInput(inputBlobs);
- // Fill output blobs.
- outputsMap.clear();
- BlobMap outputBlobs;
- for (auto& it : net.getOutputsInfo())
- {
- const InferenceEngine::TensorDesc& desc = it.second->getTensorDesc();
- genData(desc, outputsMap[it.first], outputBlobs[it.first]);
- if (cvtest::debugLevel > 0)
- {
- const std::vector<size_t>& dims = desc.getDims();
- std::cout << "Output: '" << it.first << "' precison=" << desc.getPrecision() << " dims=" << dims.size() << " [";
- for (auto d : dims)
- std::cout << " " << d;
- std::cout << "] ocv_mat=" << outputsMap[it.first].size << " of " << typeToString(outputsMap[it.first].type()) << std::endl;
- }
- }
- infRequest.SetOutput(outputBlobs);
- infRequest.Infer();
- }
- void runCV(Backend backendId, Target targetId, const std::string& xmlPath, const std::string& binPath,
- const std::map<std::string, cv::Mat>& inputsMap,
- std::map<std::string, cv::Mat>& outputsMap)
- {
- SCOPED_TRACE("runOCV");
- Net net = readNet(xmlPath, binPath);
- for (auto& it : inputsMap)
- net.setInput(it.second, it.first);
- net.setPreferableBackend(backendId);
- net.setPreferableTarget(targetId);
- std::vector<String> outNames = net.getUnconnectedOutLayersNames();
- if (cvtest::debugLevel > 0)
- {
- std::cout << "OpenCV output names: " << outNames.size() << std::endl;
- for (auto name : outNames)
- std::cout << "- " << name << std::endl;
- }
- std::vector<Mat> outs;
- net.forward(outs, outNames);
- outputsMap.clear();
- EXPECT_EQ(outs.size(), outNames.size());
- for (int i = 0; i < outs.size(); ++i)
- {
- EXPECT_TRUE(outputsMap.insert({outNames[i], outs[i]}).second);
- }
- }
- typedef TestWithParam<tuple< tuple<Backend, Target>, std::string> > DNNTestOpenVINO;
- TEST_P(DNNTestOpenVINO, models)
- {
- initDLDTDataPath();
- const Backend backendId = get<0>(get<0>(GetParam()));
- const Target targetId = get<1>(get<0>(GetParam()));
- std::string modelName = get<1>(GetParam());
- ASSERT_FALSE(backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) <<
- "Inference Engine backend is required";
- #if INF_ENGINE_VER_MAJOR_GE(2021030000)
- if (targetId == DNN_TARGET_MYRIAD && (false
- || modelName == "person-detection-retail-0013" // ncDeviceOpen:1013 Failed to find booted device after boot
- || modelName == "age-gender-recognition-retail-0013" // ncDeviceOpen:1013 Failed to find booted device after boot
- || modelName == "face-detection-0105" // get_element_type() must be called on a node with exactly one output
- || modelName == "face-detection-0106" // get_element_type() must be called on a node with exactly one output
- || modelName == "person-vehicle-bike-detection-2004" // 2021.4+: ncDeviceOpen:1013 Failed to find booted device after boot
- )
- )
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- if (targetId == DNN_TARGET_OPENCL && (false
- || modelName == "face-detection-0106" // Operation: 2278 of type ExperimentalDetectronPriorGridGenerator(op::v6) is not supported
- )
- )
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- if (targetId == DNN_TARGET_OPENCL_FP16 && (false
- || modelName == "face-detection-0106" // Operation: 2278 of type ExperimentalDetectronPriorGridGenerator(op::v6) is not supported
- )
- )
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #if INF_ENGINE_VER_MAJOR_GE(2020020000)
- if (targetId == DNN_TARGET_MYRIAD && backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- {
- if (modelName == "person-detection-retail-0013") // IRv10
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- }
- #endif
- #if INF_ENGINE_VER_MAJOR_EQ(2020040000)
- if (targetId == DNN_TARGET_MYRIAD && modelName == "person-detection-retail-0002") // IRv5, OpenVINO 2020.4 regression
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
- else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
- else
- FAIL() << "Unknown backendId";
- bool isFP16 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD);
- const std::string modelPath = getOpenVINOModel(modelName, isFP16);
- ASSERT_FALSE(modelPath.empty()) << modelName;
- std::string xmlPath = findDataFile(modelPath + ".xml", false);
- std::string binPath = findDataFile(modelPath + ".bin", false);
- std::map<std::string, cv::Mat> inputsMap;
- std::map<std::string, cv::Mat> ieOutputsMap, cvOutputsMap;
- // Single Myriad device cannot be shared across multiple processes.
- if (targetId == DNN_TARGET_MYRIAD)
- resetMyriadDevice();
- if (targetId == DNN_TARGET_HDDL)
- releaseHDDLPlugin();
- EXPECT_NO_THROW(runIE(targetId, xmlPath, binPath, inputsMap, ieOutputsMap)) << "runIE";
- if (targetId == DNN_TARGET_MYRIAD)
- resetMyriadDevice();
- EXPECT_NO_THROW(runCV(backendId, targetId, xmlPath, binPath, inputsMap, cvOutputsMap)) << "runCV";
- double eps = 0;
- #if INF_ENGINE_VER_MAJOR_GE(2020010000)
- if (targetId == DNN_TARGET_CPU && checkHardwareSupport(CV_CPU_AVX_512F))
- eps = 1e-5;
- #endif
- #if INF_ENGINE_VER_MAJOR_GE(2021030000)
- if (targetId == DNN_TARGET_CPU && modelName == "face-detection-0105")
- eps = 2e-4;
- #endif
- #if INF_ENGINE_VER_MAJOR_GE(2021040000)
- if (targetId == DNN_TARGET_CPU && modelName == "person-vehicle-bike-detection-2004")
- eps = 1e-6;
- #endif
- EXPECT_EQ(ieOutputsMap.size(), cvOutputsMap.size());
- for (auto& srcIt : ieOutputsMap)
- {
- auto dstIt = cvOutputsMap.find(srcIt.first);
- CV_Assert(dstIt != cvOutputsMap.end());
- double normInf = cvtest::norm(srcIt.second, dstIt->second, cv::NORM_INF);
- EXPECT_LE(normInf, eps) << "output=" << srcIt.first;
- }
- }
- INSTANTIATE_TEST_CASE_P(/**/,
- DNNTestOpenVINO,
- Combine(dnnBackendsAndTargetsIE(),
- testing::ValuesIn(getOpenVINOTestModelsList())
- )
- );
- typedef TestWithParam<Target> DNNTestHighLevelAPI;
- TEST_P(DNNTestHighLevelAPI, predict)
- {
- initDLDTDataPath();
- Target target = (dnn::Target)(int)GetParam();
- bool isFP16 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD);
- const std::string modelName = "age-gender-recognition-retail-0013";
- const std::string modelPath = getOpenVINOModel(modelName, isFP16);
- ASSERT_FALSE(modelPath.empty()) << modelName;
- std::string xmlPath = findDataFile(modelPath + ".xml");
- std::string binPath = findDataFile(modelPath + ".bin");
- Model model(xmlPath, binPath);
- Mat frame = imread(findDataFile("dnn/googlenet_1.png"));
- std::vector<Mat> outs;
- model.setPreferableBackend(DNN_BACKEND_INFERENCE_ENGINE);
- model.setPreferableTarget(target);
- model.predict(frame, outs);
- Net net = readNet(xmlPath, binPath);
- Mat input = blobFromImage(frame, 1.0, Size(62, 62));
- net.setInput(input);
- net.setPreferableBackend(DNN_BACKEND_INFERENCE_ENGINE);
- net.setPreferableTarget(target);
- std::vector<String> outNames = net.getUnconnectedOutLayersNames();
- std::vector<Mat> refs;
- net.forward(refs, outNames);
- CV_Assert(refs.size() == outs.size());
- for (int i = 0; i < refs.size(); ++i)
- normAssert(outs[i], refs[i]);
- }
- INSTANTIATE_TEST_CASE_P(/**/,
- DNNTestHighLevelAPI, testing::ValuesIn(getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE))
- );
- }}
- #endif // HAVE_INF_ENGINE
|