123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- //
- // Copyright (C) 2017-2019, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- // This tests doesn't require any external data. They just compare outputs of
- // layers using different computation backends. Input and parameters are random.
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- using namespace cv;
- using namespace cv::dnn;
- using namespace testing;
- static void test(Mat& input, Net& net, Backend backendId, Target targetId, bool skipCheck = false, bool randInput = true, double l1 = 0.0, double lInf = 0.0)
- {
- DNNTestLayer::checkBackend(backendId, targetId);
- if (randInput)
- randu(input, -1.0f, 1.0f);
- net.setInput(input);
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- Mat outputDefault = net.forward().clone();
- net.setPreferableBackend(backendId);
- net.setPreferableTarget(targetId);
- Mat outputHalide = net.forward().clone();
- if (skipCheck)
- return;
- double default_l1, default_lInf;
- DNNTestLayer::getDefaultThresholds(backendId, targetId, &default_l1, &default_lInf);
- if (l1 == 0.0)
- l1 = default_l1;
- if (lInf == 0.0)
- lInf = default_lInf;
- normAssert(outputDefault, outputHalide, "", l1, lInf);
- if (cvtest::debugLevel > 0 || testing::Test::HasFailure())
- {
- std::cout << "l1=" << l1 << " lInf=" << lInf << std::endl;
- std::cout << outputDefault.reshape(1, outputDefault.total()).t() << std::endl;
- std::cout << outputHalide.reshape(1, outputDefault.total()).t() << std::endl;
- }
- }
- static void test(LayerParams& params, Mat& input, Backend backendId, Target targetId, bool skipCheck = false, double l1 = 0.0, double lInf = 0.0)
- {
- Net net;
- net.addLayerToPrev(params.name, params.type, params);
- test(input, net, backendId, targetId, skipCheck, true, l1, lInf);
- }
- static inline testing::internal::ParamGenerator<tuple<Backend, Target> > dnnBackendsAndTargetsWithHalide()
- {
- return dnnBackendsAndTargets(true, true, false); // OpenCV/CPU is used as reference
- }
- class Test_Halide_layers : public DNNTestLayer {};
- ////////////////////////////////////////////////////////////////////////////////
- // Padding
- ////////////////////////////////////////////////////////////////////////////////
- TEST_P(Test_Halide_layers, Padding)
- {
- static const int kNumRuns = 10;
- std::vector<int> paddings(8);
- cv::RNG& rng = cv::theRNG();
- for (int t = 0; t < kNumRuns; ++t)
- {
- for (int i = 0; i < paddings.size(); ++i)
- paddings[i] = rng(5);
- LayerParams lp;
- lp.set("paddings", DictValue::arrayInt<int*>(&paddings[0], paddings.size()));
- lp.type = "Padding";
- lp.name = "testLayer";
- int sz[] = {1 + (int)rng(10), 1 + (int)rng(10), 1 + (int)rng(10), 1 + (int)rng(10)};
- Mat input(4, &sz[0], CV_32F);
- test(lp, input, backend, target);
- }
- }
- ////////////////////////////////////////////////////////////////////////////////
- // Convolution
- ////////////////////////////////////////////////////////////////////////////////
- typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Size, bool, tuple<Backend, Target> > > Convolution;
- TEST_P(Convolution, Accuracy)
- {
- int inChannels = get<0>(GetParam())[0];
- int outChannels = get<0>(GetParam())[1];
- int group = get<0>(GetParam())[2];
- Size inSize = get<1>(GetParam());
- Size kernel = get<2>(GetParam());
- Size stride = get<3>(GetParam());
- Size pad = get<4>(GetParam());
- Size dilation = get<5>(GetParam());
- bool hasBias = get<6>(GetParam());
- Backend backendId = get<0>(get<7>(GetParam()));
- Target targetId = get<1>(get<7>(GetParam()));
- bool skipCheck = false;
- int sz[] = {outChannels, inChannels / group, kernel.height, kernel.width};
- Mat weights(4, &sz[0], CV_32F);
- randu(weights, -1.0f, 1.0f);
- LayerParams lp;
- lp.set("kernel_w", kernel.width);
- lp.set("kernel_h", kernel.height);
- lp.set("pad_w", pad.width);
- lp.set("pad_h", pad.height);
- lp.set("stride_w", stride.width);
- lp.set("stride_h", stride.height);
- lp.set("dilation_w", dilation.width);
- lp.set("dilation_h", dilation.height);
- lp.set("num_output", outChannels);
- lp.set("group", group);
- lp.set("bias_term", hasBias);
- lp.type = "Convolution";
- lp.name = "testLayer";
- lp.blobs.push_back(weights);
- if (hasBias)
- {
- Mat bias(1, outChannels, CV_32F);
- randu(bias, -1.0f, 1.0f);
- lp.blobs.push_back(bias);
- }
- int inpSz[] = {1, inChannels, inSize.height, inSize.width};
- Mat input(4, &inpSz[0], CV_32F);
- test(lp, input, backendId, targetId, skipCheck);
- if (skipCheck)
- throw SkipTestException("Skip checks in unstable test");
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Convolution, Combine(
- /*in channels, out channels, group*/
- Values(Vec3i(6, 4, 1), Vec3i(6, 9, 1),
- Vec3i(6, 4, 2), Vec3i(6, 9, 3)),
- /*in size*/ Values(Size(5, 6)),
- /*kernel*/ Values(Size(3, 1), Size(1, 3)),
- /*stride*/ Values(Size(1, 1), Size(2, 2)),
- /*pad*/ Values(Size(1, 0), Size(0, 1)),
- /*dilation*/ Values(Size(1, 1), Size(2, 2)),
- /*has bias*/ Bool(),
- dnnBackendsAndTargetsWithHalide()
- ));
- ////////////////////////////////////////////////////////////////////////////////
- // Deconvolution
- ////////////////////////////////////////////////////////////////////////////////
- typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Vec4i, bool, tuple<Backend, Target> > > Deconvolution;
- TEST_P(Deconvolution, Accuracy)
- {
- int inChannels = get<0>(GetParam())[0];
- int outChannels = get<0>(GetParam())[1];
- int group = get<0>(GetParam())[2];
- Size inSize = get<1>(GetParam());
- Size kernel = get<2>(GetParam());
- Size pad = get<3>(GetParam());
- Size dilation = get<4>(GetParam());
- Size stride = Size(get<5>(GetParam())[0], get<5>(GetParam())[1]);
- Size adjPad = Size(get<5>(GetParam())[2], get<5>(GetParam())[3]);
- bool hasBias = get<6>(GetParam());
- Backend backendId = get<0>(get<7>(GetParam()));
- Target targetId = get<1>(get<7>(GetParam()));
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD
- && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
- && inChannels == 6 && outChannels == 4 && group == 1
- && kernel == Size(1, 3) && pad == Size(1, 0)
- && stride == Size(1, 1) && dilation == Size(1, 1))
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
- #endif
- if (targetId == DNN_TARGET_CUDA_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
- int sz[] = {inChannels, outChannels / group, kernel.height, kernel.width};
- Mat weights(4, &sz[0], CV_32F);
- randu(weights, -1.0f, 1.0f);
- LayerParams lp;
- lp.set("kernel_w", kernel.width);
- lp.set("kernel_h", kernel.height);
- lp.set("pad_w", pad.width);
- lp.set("pad_h", pad.height);
- lp.set("stride_w", stride.width);
- lp.set("stride_h", stride.height);
- lp.set("dilation_w", dilation.width);
- lp.set("dilation_h", dilation.height);
- lp.set("adj_w", adjPad.width);
- lp.set("adj_h", adjPad.height);
- lp.set("num_output", outChannels);
- lp.set("group", group);
- lp.set("bias_term", hasBias);
- lp.type = "Deconvolution";
- lp.name = "testLayer";
- lp.blobs.push_back(weights);
- if (hasBias)
- {
- Mat bias(1, outChannels, CV_32F);
- randu(bias, -1.0f, 1.0f);
- lp.blobs.push_back(bias);
- }
- int inpSz[] = {1, inChannels, inSize.height, inSize.width};
- Mat input(4, &inpSz[0], CV_32F);
- test(lp, input, backendId, targetId);
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Deconvolution, Combine(
- /*in channels, out channels, group*/
- Values(Vec3i(6, 4, 1), Vec3i(6, 9, 3)),
- /*in size*/ Values(Size(5, 6)),
- /*kernel*/ Values(Size(3, 1), Size(1, 3)),
- /*pad*/ Values(Size(1, 0), Size(0, 1)),
- /*dilation*/ Values(Size(1, 1)),
- /*stride, adj. pad*/ Values(Vec4i(1,1, 0,0), Vec4i(2,2, 1,0), Vec4i(1,2, 0,1)),
- /*has bias*/ Bool(),
- dnnBackendsAndTargetsWithHalide()
- ));
- ////////////////////////////////////////////////////////////////////////////////
- // LRN
- ////////////////////////////////////////////////////////////////////////////////
- typedef TestWithParam<tuple<Vec3i, int, Vec3f, bool, std::string, tuple<Backend, Target> > > LRN;
- TEST_P(LRN, Accuracy)
- {
- int inChannels = get<0>(GetParam())[0];
- Size inSize = Size(get<0>(GetParam())[1], get<0>(GetParam())[2]);
- int localSize = get<1>(GetParam());
- float alpha = get<2>(GetParam())[0];
- float beta = get<2>(GetParam())[1];
- float bias = get<2>(GetParam())[2];
- bool normBySize = get<3>(GetParam());
- std::string nrmType = get<4>(GetParam());
- Backend backendId = get<0>(get<5>(GetParam()));
- Target targetId = get<1>(get<5>(GetParam()));
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if ((inSize.width == 5 || inSize.height == 5) && targetId == DNN_TARGET_MYRIAD &&
- nrmType == "ACROSS_CHANNELS")
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
- #endif
- LayerParams lp;
- lp.set("norm_region", nrmType);
- lp.set("local_size", localSize);
- lp.set("alpha", alpha);
- lp.set("beta", beta);
- lp.set("bias", bias);
- lp.set("norm_by_size", normBySize);
- lp.type = "LRN";
- lp.name = "testLayer";
- int sz[] = {1, inChannels, inSize.height, inSize.width};
- Mat input(4, &sz[0], CV_32F);
- double l1 = 0.0, lInf = 0.0;
- // The OpenCL kernels use the native_ math functions which have
- // implementation defined accuracy, so we use relaxed thresholds. See
- // https://github.com/opencv/opencv/issues/9821 for more details.
- if (targetId == DNN_TARGET_OPENCL)
- {
- l1 = 0.01;
- lInf = 0.01;
- }
- test(lp, input, backendId, targetId, false, l1, lInf);
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, LRN, Combine(
- /*input ch,w,h*/ Values(Vec3i(6, 5, 8), Vec3i(7, 11, 6)),
- /*local size*/ Values(3, 5),
- Values(Vec3f(0.9f, 1.0f, 1.1f), Vec3f(0.9f, 1.1f, 1.0f),
- /*alpha, beta, bias*/ Vec3f(1.0f, 0.9f, 1.1f), Vec3f(1.0f, 1.1f, 0.9f),
- Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)),
- /*norm_by_size*/ Bool(),
- /*norm_type*/ Values("ACROSS_CHANNELS", "WITHIN_CHANNEL"),
- dnnBackendsAndTargetsWithHalide()
- ));
- ////////////////////////////////////////////////////////////////////////////////
- // Average pooling
- ////////////////////////////////////////////////////////////////////////////////
- typedef TestWithParam<tuple<int, Size, Size, Size, tuple<Backend, Target> > > AvePooling;
- TEST_P(AvePooling, Accuracy)
- {
- int inChannels = get<0>(GetParam());
- Size outSize = get<1>(GetParam());; // Input size will be computed from parameters.
- Size kernel = get<2>(GetParam());
- Size stride = get<3>(GetParam());
- Backend backendId = get<0>(get<4>(GetParam()));
- Target targetId = get<1>(get<4>(GetParam()));
- #if defined(INF_ENGINE_RELEASE)
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD
- && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
- && kernel == Size(1, 1) && (stride == Size(1, 1) || stride == Size(2, 2)))
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
- #endif
- const int inWidth = (outSize.width - 1) * stride.width + kernel.width;
- const int inHeight = (outSize.height - 1) * stride.height + kernel.height;
- LayerParams lp;
- lp.set("pool", "ave");
- lp.set("kernel_w", kernel.width);
- lp.set("kernel_h", kernel.height);
- lp.set("stride_w", stride.width);
- lp.set("stride_h", stride.height);
- lp.type = "Pooling";
- lp.name = "testLayer";
- int sz[] = {1, inChannels, inHeight, inWidth};
- Mat input(4, &sz[0], CV_32F);
- test(lp, input, backendId, targetId);
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, AvePooling, Combine(
- /*in channels*/ Values(3, 4),
- /*out size*/ Values(Size(1, 1), Size(2, 2), Size(3, 2), Size(4, 7)),
- /*kernel*/ Values(Size(1, 1), Size(2, 2), Size(3, 3), Size(3, 2)),
- /*stride*/ Values(Size(1, 1), Size(2, 2), Size(3, 2)),
- dnnBackendsAndTargetsWithHalide()
- ));
- ////////////////////////////////////////////////////////////////////////////////
- // Maximum pooling
- ////////////////////////////////////////////////////////////////////////////////
- typedef TestWithParam<tuple<int, Size, Size, Size, Size, tuple<Backend, Target> > > MaxPooling;
- TEST_P(MaxPooling, Accuracy)
- {
- int inChannels = get<0>(GetParam());
- Size inSize = get<1>(GetParam());
- Size kernel = get<2>(GetParam());
- Size stride = get<3>(GetParam());
- Size pad = get<4>(GetParam());
- Backend backendId = get<0>(get<5>(GetParam()));
- Target targetId = get<1>(get<5>(GetParam()));
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD
- && inSize == Size(7, 6) && kernel == Size(3, 2)
- && (stride == Size(1, 1) || stride == Size(2, 2))
- && (pad == Size(0, 1) || pad == Size(1, 1))
- )
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD
- && (kernel == Size(2, 2) || kernel == Size(3, 2))
- && stride == Size(1, 1) && (pad == Size(0, 0) || pad == Size(0, 1))
- )
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD
- && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
- && (stride == Size(1, 1) || stride == Size(2, 2))
- && (pad == Size(0, 1) || pad == Size(1, 1))
- )
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- LayerParams lp;
- lp.set("pool", "max");
- lp.set("kernel_w", kernel.width);
- lp.set("kernel_h", kernel.height);
- lp.set("stride_w", stride.width);
- lp.set("stride_h", stride.height);
- lp.set("pad_w", pad.width);
- lp.set("pad_h", pad.height);
- lp.type = "Pooling";
- lp.name = "testLayer";
- int sz[] = {1, inChannels, inSize.height, inSize.width};
- Mat input(4, &sz[0], CV_32F);
- test(lp, input, backendId, targetId);
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, MaxPooling, Combine(
- /*in channels*/ Values(3, 4),
- /*in size*/ Values(Size(5, 5), Size(7, 6)),
- /*kernel*/ Values(Size(2, 2), Size(3, 3), Size(3, 2)),
- /*stride*/ Values(Size(1, 1), Size(2, 2), Size(3, 2)),
- /*pad*/ Values(Size(0, 0), Size(1, 1), Size(0, 1)),
- dnnBackendsAndTargetsWithHalide()
- ));
- ////////////////////////////////////////////////////////////////////////////////
- // Fully-connected
- ////////////////////////////////////////////////////////////////////////////////
- typedef TestWithParam<tuple<int, Size, int, bool, tuple<Backend, Target> > > FullyConnected;
- TEST_P(FullyConnected, Accuracy)
- {
- int inChannels = get<0>(GetParam());
- Size inSize = get<1>(GetParam());
- int outChannels = get<2>(GetParam());
- bool hasBias = get<3>(GetParam());
- Backend backendId = get<0>(get<4>(GetParam()));
- Target targetId = get<1>(get<4>(GetParam()));
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if ((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
- backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && (targetId == DNN_TARGET_OPENCL_FP16 ||
- (targetId == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X))) {
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
- }
- #endif
- Mat weights(outChannels, inChannels * inSize.height * inSize.width, CV_32F);
- randu(weights, -1.0f, 1.0f);
- Mat bias(1, outChannels, CV_32F);
- randu(bias, -1.0f, 1.0f);
- LayerParams lp;
- lp.set("num_output", outChannels);
- lp.set("bias_term", hasBias);
- lp.blobs.push_back(weights);
- lp.blobs.push_back(bias);
- lp.type = "InnerProduct";
- lp.name = "testLayer";
- int sz[] = {1, inChannels, inSize.height, inSize.width};
- Mat input(4, &sz[0], CV_32F);
- double l1 = 0.0;
- double lInf = 0.0;
- #if defined(INF_ENGINE_RELEASE)
- if (targetId == DNN_TARGET_MYRIAD)
- {
- l1 = 0.015;
- lInf = 0.025;
- }
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL_FP16)
- {
- l1 = 0.01;
- }
- #endif
- if (targetId == DNN_TARGET_CUDA_FP16)
- l1 = 0.015;
- test(lp, input, backendId, targetId, false, l1, lInf);
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, FullyConnected, Combine(
- /*in channels*/ Values(3, 4),
- /*in size*/ Values(Size(5, 4), Size(4, 5), Size(1, 1)),
- /*out channels*/ Values(3, 4),
- /*has bias*/ Bool(),
- dnnBackendsAndTargetsWithHalide()
- ));
- ////////////////////////////////////////////////////////////////////////////////
- // SoftMax
- ////////////////////////////////////////////////////////////////////////////////
- typedef TestWithParam<tuple<int, tuple<Backend, Target> > > SoftMax;
- TEST_P(SoftMax, Accuracy)
- {
- int inChannels = get<0>(GetParam());
- Backend backendId = get<0>(get<1>(GetParam()));
- Target targetId = get<1>(get<1>(GetParam()));
- LayerParams lp;
- lp.type = "Softmax";
- lp.name = "testLayer";
- int sz[] = {1, inChannels, 1, 1};
- Mat input(4, &sz[0], CV_32F);
- test(lp, input, backendId, targetId);
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, SoftMax, Combine(
- Values(3, 4, 5, 1024),
- dnnBackendsAndTargetsWithHalide()
- ));
- //////////////////////////////////////////////////////////////////////////////
- // Max pooling - unpooling
- //////////////////////////////////////////////////////////////////////////////
- TEST_P(Test_Halide_layers, MaxPoolUnpool)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- LayerParams pool;
- pool.set("pool", "max");
- pool.set("kernel_w", 2);
- pool.set("kernel_h", 2);
- pool.set("stride_w", 2);
- pool.set("stride_h", 2);
- pool.set("pad_w", 0);
- pool.set("pad_h", 0);
- pool.type = "Pooling";
- pool.name = "testPool";
- LayerParams unpool;
- unpool.set("pool_k_w", 2);
- unpool.set("pool_k_h", 2);
- unpool.set("pool_stride_w", 2);
- unpool.set("pool_stride_h", 2);
- unpool.set("pool_pad_w", 0);
- unpool.set("pool_pad_h", 0);
- unpool.type = "MaxUnpool";
- unpool.name = "testUnpool";
- Net net;
- int poolId = net.addLayer(pool.name, pool.type, pool);
- net.connect(0, 0, poolId, 0);
- int unpoolId = net.addLayer(unpool.name, unpool.type, unpool);
- net.connect(poolId, 0, unpoolId, 0);
- net.connect(poolId, 1, unpoolId, 1);
- int sz[] = {1, 1, 4, 4};
- Mat input(4, &sz[0], CV_32F);
- test(input, net, backend, target);
- }
- ////////////////////////////////////////////////////////////////////////////////
- // AvePooling + in-place layers
- ////////////////////////////////////////////////////////////////////////////////
- static const int kNumChannels = 3;
- void testInPlaceActivation(LayerParams& lp, Backend backendId, Target targetId, double l1 = 0.0, double lInf = 0.0)
- {
- EXPECT_FALSE(lp.name.empty());
- LayerParams pool;
- pool.set("pool", "ave");
- pool.set("kernel_w", 2);
- pool.set("kernel_h", 2);
- pool.set("stride_w", 2);
- pool.set("stride_h", 2);
- pool.type = "Pooling";
- pool.name = "ave_pool";
- Net net;
- int poolId = net.addLayer(pool.name, pool.type, pool);
- net.connect(0, 0, poolId, 0);
- net.addLayerToPrev(lp.name, lp.type, lp);
- int sz[] = {1, kNumChannels, 10, 10};
- Mat input(4, &sz[0], CV_32F);
- test(input, net, backendId, targetId, false, true, l1, lInf);
- }
- typedef TestWithParam<tuple<bool, bool, float, tuple<Backend, Target> > > BatchNorm;
- TEST_P(BatchNorm, Accuracy)
- {
- bool hasWeights = get<0>(GetParam());
- bool hasBias = get<1>(GetParam());
- float epsilon = get<2>(GetParam());
- Backend backendId = get<0>(get<3>(GetParam()));
- Target targetId = get<1>(get<3>(GetParam()));
- LayerParams lp;
- lp.set("has_weight", hasWeights);
- lp.set("has_bias", hasBias);
- lp.set("eps", epsilon);
- lp.type = "BatchNorm";
- lp.name = "testLayer";
- lp.blobs.reserve(4);
- for (int i = 0; i < 3; ++i)
- lp.blobs.push_back(Mat(1, kNumChannels, CV_32F));
- if (hasBias || hasWeights)
- lp.blobs.push_back(Mat(1, kNumChannels, CV_32F));
- for (int i = 0; i < lp.blobs.size(); ++i)
- randu(lp.blobs[i], 0.0f, 1.0f);
- testInPlaceActivation(lp, backendId, targetId);
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, BatchNorm, Combine(
- /*has weights*/ Bool(),
- /*has bias*/ Bool(),
- /*epsilon*/ Values(1e-3f, 1e-5f),
- dnnBackendsAndTargetsWithHalide()
- ));
- typedef TestWithParam<tuple<float, tuple<Backend, Target> > > ReLU;
- TEST_P(ReLU, Accuracy)
- {
- float negativeSlope = get<0>(GetParam());
- Backend backendId = get<0>(get<1>(GetParam()));
- Target targetId = get<1>(get<1>(GetParam()));
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019020000)
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD && negativeSlope < 0)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- LayerParams lp;
- lp.set("negative_slope", negativeSlope);
- lp.type = "ReLU";
- lp.name = "testLayer";
- testInPlaceActivation(lp, backendId, targetId);
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, ReLU, Combine(
- /*negative slope*/ Values(2.0f, 0.3f, -0.1f, 0.0f),
- dnnBackendsAndTargetsWithHalide()
- ));
- typedef TestWithParam<tuple<std::string, tuple<Backend, Target> > > NoParamActivation;
- TEST_P(NoParamActivation, Accuracy)
- {
- Backend backendId = get<0>(get<1>(GetParam()));
- Target targetId = get<1>(get<1>(GetParam()));
- LayerParams lp;
- lp.type = get<0>(GetParam());
- lp.name = "testLayer";
- testInPlaceActivation(lp, backendId, targetId);
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, NoParamActivation, Combine(
- /*type*/ Values("TanH", "Sigmoid", "AbsVal", "BNLL", "Swish", "Mish"),
- dnnBackendsAndTargetsWithHalide()
- ));
- typedef TestWithParam<tuple<Vec3f, tuple<Backend, Target> > > Power;
- TEST_P(Power, Accuracy)
- {
- float power = get<0>(GetParam())[0];
- float scale = get<0>(GetParam())[1];
- float shift = get<0>(GetParam())[2];
- Backend backendId = get<0>(get<1>(GetParam()));
- Target targetId = get<1>(get<1>(GetParam()));
- LayerParams lp;
- lp.set("power", power);
- lp.set("scale", scale);
- lp.set("shift", shift);
- lp.type = "Power";
- lp.name = "testLayer";
- testInPlaceActivation(lp, backendId, targetId);
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Power, Combine(
- /*power, scale, shift*/ Values(Vec3f(0.9f, 1.0f, 1.1f), Vec3f(0.9f, 1.1f, 1.0f),
- Vec3f(1.0f, 0.9f, 1.1f), Vec3f(1.0f, 1.1f, 0.9f),
- Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)),
- dnnBackendsAndTargetsWithHalide()
- ));
- typedef TestWithParam<tuple<Vec3f, tuple<Backend, Target> > > Exp;
- TEST_P(Exp, Accuracy)
- {
- float base = get<0>(GetParam())[0];
- float scale = get<0>(GetParam())[1];
- float shift = get<0>(GetParam())[2];
- Backend backendId = get<0>(get<1>(GetParam()));
- Target targetId = get<1>(get<1>(GetParam()));
- LayerParams lp;
- lp.set("base", base);
- lp.set("scale", scale);
- lp.set("shift", shift);
- lp.type = "Exp";
- lp.name = "testLayer";
- testInPlaceActivation(lp, backendId, targetId);
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Exp, Combine(
- /*base, scale, shift*/ Values(Vec3f(0.9f, -1.0f, 1.1f), Vec3f(0.9f, 1.1f, -1.0f),
- Vec3f(-1.0f, 0.9f, 1.1f), Vec3f(-1.0f, 1.1f, 0.9f),
- Vec3f(1.1f, 0.9f, -1.0f), Vec3f(1.1f, -1.0f, 0.9f)),
- dnnBackendsAndTargetsWithHalide()
- ));
- TEST_P(Test_Halide_layers, ChannelsPReLU)
- {
- LayerParams lp;
- lp.type = "ChannelsPReLU";
- lp.name = "testLayer";
- lp.blobs.push_back(Mat(1, kNumChannels, CV_32F));
- randu(lp.blobs[0], -1.0f, 1.0f);
- testInPlaceActivation(lp, backend, target);
- }
- typedef TestWithParam<tuple<bool, tuple<Backend, Target> > > Scale;
- TEST_P(Scale, Accuracy)
- {
- bool hasBias = get<0>(GetParam());
- Backend backendId = get<0>(get<1>(GetParam()));
- Target targetId = get<1>(get<1>(GetParam()));
- LayerParams lp;
- lp.set("bias_term", hasBias);
- lp.type = "Scale";
- lp.name = "testLayer";
- lp.blobs.push_back(Mat(1, kNumChannels, CV_32F));
- randu(lp.blobs[0], -1.0f, 1.0f);
- if (hasBias)
- {
- lp.blobs.push_back(Mat(1, kNumChannels, CV_32F));
- randu(lp.blobs[1], -1.0f, 1.0f);
- }
- testInPlaceActivation(lp, backendId, targetId);
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Scale, Combine(
- Bool(),
- dnnBackendsAndTargetsWithHalide()
- ));
- ////////////////////////////////////////////////////////////////////////////////
- // Concat layer
- ////////////////////////////////////////////////////////////////////////////////
- //
- // input --- conv --- concat --- output
- // `--- conv ----^ ^ ^
- // `---- ... ------' '
- // `-----------------'
- typedef TestWithParam<tuple<Vec3i, Vec3i, tuple<Backend, Target> > > Concat;
- TEST_P(Concat, Accuracy)
- {
- Vec3i inSize = get<0>(GetParam());
- Vec3i numChannels = get<1>(GetParam());
- Backend backendId = get<0>(get<2>(GetParam()));
- Target targetId = get<1>(get<2>(GetParam()));
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD
- && inSize == Vec3i(1, 4, 5) && numChannels == Vec3i(1, 6, 2)
- )
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); // crash
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_CPU
- && inSize == Vec3i(1, 4, 5) && numChannels == Vec3i(1, 6, 2)
- )
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); // TODO: IE_CPU
- #endif
- Net net;
- std::vector<int> convLayerIds;
- convLayerIds.reserve(numChannels.channels);
- for (int i = 0, n = numChannels.channels; i < n; ++i)
- {
- if (!numChannels[i])
- break;
- int sz[] = {numChannels[i], inSize[0], 1, 1};
- Mat weights(4, &sz[0], CV_32F);
- randu(weights, -1.0f, 1.0f);
- LayerParams convParam;
- convParam.set("kernel_w", 1);
- convParam.set("kernel_h", 1);
- convParam.set("num_output", numChannels[i]);
- convParam.set("bias_term", false);
- convParam.type = "Convolution";
- std::ostringstream ss;
- ss << "convLayer" << i;
- convParam.name = ss.str();
- convParam.blobs.push_back(weights);
- int layerId = net.addLayer(convParam.name, convParam.type, convParam);
- convLayerIds.push_back(layerId);
- net.connect(0, 0, layerId, 0);
- }
- LayerParams concatParam;
- concatParam.type = "Concat";
- concatParam.name = "testLayer";
- int concatId = net.addLayer(concatParam.name, concatParam.type, concatParam);
- net.connect(0, 0, concatId, 0);
- for (int i = 0; i < convLayerIds.size(); ++i)
- {
- net.connect(convLayerIds[i], 0, concatId, i + 1);
- }
- int sz[] = {1, inSize[0], inSize[1], inSize[2]};
- Mat input(4, &sz[0], CV_32F);
- test(input, net, backendId, targetId);
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Concat, Combine(
- /*input size*/ Values(Vec3i(1, 4, 5), Vec3i(2, 8, 6)),
- /*channels*/ Values(Vec3i(2, 0, 0), Vec3i(3, 4, 0), Vec3i(1, 6, 2)),
- dnnBackendsAndTargetsWithHalide()
- ));
- ////////////////////////////////////////////////////////////////////////////////
- // Element-wise layers
- ////////////////////////////////////////////////////////////////////////////////
- //
- // input --- conv --- eltwise --- output
- // `--- conv ----^ ^ ^
- // `---- ... ------' '
- // `-----------------'
- typedef TestWithParam<tuple<Vec3i, std::string, int, bool, tuple<Backend, Target> > > Eltwise;
- TEST_P(Eltwise, Accuracy)
- {
- Vec3i inSize = get<0>(GetParam());
- std::string op = get<1>(GetParam());
- int numConv = get<2>(GetParam());
- bool weighted = get<3>(GetParam());
- Backend backendId = get<0>(get<4>(GetParam()));
- Target targetId = get<1>(get<4>(GetParam()));
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- // accuracy
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL &&
- inSize == Vec3i(1, 4, 5) && op == "sum" && numConv == 1 && !weighted)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL &&
- inSize == Vec3i(2, 8, 6) && op == "sum" && numConv == 1 && !weighted)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD &&
- inSize == Vec3i(1, 4, 5))
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && numConv > 1)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_OPENCL &&
- op == "sum" && numConv == 1 && !weighted)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && numConv > 1)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- bool convInputShift = 1;
- int numEltwiseInputs = numConv;
- if (op == "div")
- {
- numConv = 1;
- convInputShift = 0; // first input is convolution
- }
- Net net;
- std::vector<int> convLayerIds(numConv);
- for (int i = 0; i < numConv; ++i)
- {
- int sz[] = {inSize[0], inSize[0], 1, 1};
- Mat weights(4, &sz[0], CV_32F);
- randu(weights, -1.0f, 1.0f);
- LayerParams convParam;
- convParam.set("kernel_w", 1);
- convParam.set("kernel_h", 1);
- convParam.set("num_output", inSize[0]);
- convParam.set("bias_term", false);
- convParam.type = "Convolution";
- std::ostringstream ss;
- ss << "convLayer" << i;
- convParam.name = ss.str();
- convParam.blobs.push_back(weights);
- convLayerIds[i] = net.addLayer(convParam.name, convParam.type, convParam);
- net.connect(0, 0, convLayerIds[i], 0);
- }
- LayerParams eltwiseParam;
- eltwiseParam.set("operation", op);
- if (op == "sum" && weighted)
- {
- RNG& rng = cv::theRNG();
- std::vector<float> coeff(1 + numConv);
- for (int i = 0; i < coeff.size(); ++i)
- {
- coeff[i] = rng.uniform(-2.0f, 2.0f);
- }
- eltwiseParam.set("coeff", DictValue::arrayReal<float*>(&coeff[0], coeff.size()));
- }
- eltwiseParam.type = "Eltwise";
- eltwiseParam.name = "testLayer";
- int eltwiseId = net.addLayer(eltwiseParam.name, eltwiseParam.type, eltwiseParam);
- if (convInputShift == 1)
- net.connect(0, 0, eltwiseId, 0);
- for (int i = 0; i < numConv; ++i)
- {
- net.connect(convLayerIds[i], 0, eltwiseId, i + convInputShift);
- }
- if (convInputShift == 0)
- net.connect(0, 0, eltwiseId, numConv);
- for (int i = numConv; i < numEltwiseInputs; ++i)
- {
- net.connect(0, 0, eltwiseId, i + 1);
- }
- int sz[] = {1, inSize[0], inSize[1], inSize[2]};
- Mat input(4, &sz[0], CV_32F);
- if (op == "div")
- randu(input, 1.0f, 1.0f); // ensure no divisor value has absouluate value of less than 0.5
- test(input, net, backendId, targetId, /*skipCheck*/false, (op == "div") ? false : true);
- }
- INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Eltwise, Combine(
- /*input size*/ Values(Vec3i(1, 4, 5), Vec3i(2, 8, 6)),
- /*operation*/ Values("prod", "sum", "div", "max", "min"),
- /*num convs*/ Values(1, 2, 3),
- /*weighted(for sum only)*/ Bool(),
- dnnBackendsAndTargetsWithHalide()
- ));
- ////////////////////////////////////////////////////////////////////////////
- // Mixed backends
- ////////////////////////////////////////////////////////////////////////////
- #ifdef HAVE_HALIDE
- TEST(MixedBackends_Halide_Default_Halide, Accuracy)
- {
- // Just a layer that supports Halide backend.
- LayerParams lrn;
- lrn.type = "LRN";
- lrn.name = "testLRN";
- // Some of layers that doesn't supports Halide backend yet.
- LayerParams mvn;
- mvn.type = "MVN";
- mvn.name = "testMVN";
- // Halide layer again.
- LayerParams lrn2;
- lrn2.type = "LRN";
- lrn2.name = "testLRN2";
- Net net;
- int lrnId = net.addLayer(lrn.name, lrn.type, lrn);
- net.connect(0, 0, lrnId, 0);
- net.addLayerToPrev(mvn.name, mvn.type, mvn);
- net.addLayerToPrev(lrn2.name, lrn2.type, lrn2);
- int sz[] = {4, 3, 5, 6};
- Mat input(4, &sz[0], CV_32F);
- randu(input, -1.0f, 1.0f);
- net.setInput(input);
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- Mat outputDefault = net.forward().clone();
- net.setPreferableBackend(DNN_BACKEND_HALIDE);
- net.setInput(input);
- Mat outputHalide = net.forward().clone();
- normAssert(outputDefault, outputHalide);
- net.setPreferableTarget(DNN_TARGET_OPENCL);
- net.setInput(input);
- outputHalide = net.forward().clone();
- normAssert(outputDefault, outputHalide);
- }
- #endif // HAVE_HALIDE
- INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_Halide_layers, dnnBackendsAndTargetsWithHalide());
- }} // namespace
|