123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- // (3-clause BSD License)
- //
- // Copyright (C) 2017, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * Neither the names of the copyright holders nor the names of the contributors
- // may be used to endorse or promote products derived from this software
- // without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall copyright holders or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- #include "npy_blob.hpp"
- #include <opencv2/dnn/shape_utils.hpp>
- namespace opencv_test { namespace {
- template<typename TString>
- static std::string _tf(TString filename)
- {
- return (getOpenCVExtraDir() + "/dnn/") + filename;
- }
- TEST(Test_Darknet, read_tiny_yolo_voc)
- {
- Net net = readNetFromDarknet(_tf("tiny-yolo-voc.cfg"));
- ASSERT_FALSE(net.empty());
- }
- TEST(Test_Darknet, read_yolo_voc)
- {
- Net net = readNetFromDarknet(_tf("yolo-voc.cfg"));
- ASSERT_FALSE(net.empty());
- }
- TEST(Test_Darknet, read_yolo_voc_stream)
- {
- applyTestTag(CV_TEST_TAG_MEMORY_1GB);
- Mat ref;
- Mat sample = imread(_tf("dog416.png"));
- Mat inp = blobFromImage(sample, 1.0/255, Size(416, 416), Scalar(), true, false);
- const std::string cfgFile = findDataFile("dnn/yolo-voc.cfg");
- const std::string weightsFile = findDataFile("dnn/yolo-voc.weights", false);
- // Import by paths.
- {
- Net net = readNetFromDarknet(cfgFile, weightsFile);
- net.setInput(inp);
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- ref = net.forward();
- }
- // Import from bytes array.
- {
- std::vector<char> cfg, weights;
- readFileContent(cfgFile, cfg);
- readFileContent(weightsFile, weights);
- Net net = readNetFromDarknet(cfg.data(), cfg.size(), weights.data(), weights.size());
- net.setInput(inp);
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- Mat out = net.forward();
- normAssert(ref, out);
- }
- }
- class Test_Darknet_layers : public DNNTestLayer
- {
- public:
- void testDarknetLayer(const std::string& name, bool hasWeights = false, bool testBatchProcessing = true)
- {
- SCOPED_TRACE(name);
- Mat inp = blobFromNPY(findDataFile("dnn/darknet/" + name + "_in.npy"));
- Mat ref = blobFromNPY(findDataFile("dnn/darknet/" + name + "_out.npy"));
- std::string cfg = findDataFile("dnn/darknet/" + name + ".cfg");
- std::string model = "";
- if (hasWeights)
- model = findDataFile("dnn/darknet/" + name + ".weights");
- checkBackend(&inp, &ref);
- Net net = readNet(cfg, model);
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- net.setInput(inp);
- Mat out = net.forward();
- normAssert(out, ref, "", default_l1, default_lInf);
- if (inp.size[0] == 1 && testBatchProcessing) // test handling of batch size
- {
- SCOPED_TRACE("batch size 2");
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (target == DNN_TARGET_MYRIAD && name == "shortcut")
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
- #endif
- std::vector<int> sz2 = shape(inp);
- sz2[0] = 2;
- Net net2 = readNet(cfg, model);
- net2.setPreferableBackend(backend);
- net2.setPreferableTarget(target);
- Range ranges0[4] = { Range(0, 1), Range::all(), Range::all(), Range::all() };
- Range ranges1[4] = { Range(1, 2), Range::all(), Range::all(), Range::all() };
- Mat inp2(sz2, inp.type(), Scalar::all(0));
- inp.copyTo(inp2(ranges0));
- inp.copyTo(inp2(ranges1));
- net2.setInput(inp2);
- Mat out2 = net2.forward();
- EXPECT_EQ(0, cv::norm(out2(ranges0), out2(ranges1), NORM_INF)) << "Batch result is not equal: " << name;
- Mat ref2 = ref;
- if (ref.dims == 2 && out2.dims == 3)
- {
- int ref_3d_sizes[3] = {1, ref.rows, ref.cols};
- ref2 = Mat(3, ref_3d_sizes, ref.type(), (void*)ref.data);
- }
- /*else if (ref.dims == 3 && out2.dims == 4)
- {
- int ref_4d_sizes[4] = {1, ref.size[0], ref.size[1], ref.size[2]};
- ref2 = Mat(4, ref_4d_sizes, ref.type(), (void*)ref.data);
- }*/
- ASSERT_EQ(out2.dims, ref2.dims) << ref.dims;
- normAssert(out2(ranges0), ref2, "", default_l1, default_lInf);
- normAssert(out2(ranges1), ref2, "", default_l1, default_lInf);
- }
- }
- };
- class Test_Darknet_nets : public DNNTestLayer
- {
- public:
- // Test object detection network from Darknet framework.
- void testDarknetModel(const std::string& cfg, const std::string& weights,
- const std::vector<std::vector<int> >& refClassIds,
- const std::vector<std::vector<float> >& refConfidences,
- const std::vector<std::vector<Rect2d> >& refBoxes,
- double scoreDiff, double iouDiff, float confThreshold = 0.24, float nmsThreshold = 0.4)
- {
- checkBackend();
- Mat img1 = imread(_tf("dog416.png"));
- Mat img2 = imread(_tf("street.png"));
- std::vector<Mat> samples(2);
- samples[0] = img1; samples[1] = img2;
- // determine test type, whether batch or single img
- int batch_size = refClassIds.size();
- CV_Assert(batch_size == 1 || batch_size == 2);
- samples.resize(batch_size);
- Mat inp = blobFromImages(samples, 1.0/255, Size(416, 416), Scalar(), true, false);
- Net net = readNet(findDataFile("dnn/" + cfg),
- findDataFile("dnn/" + weights, false));
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- net.setInput(inp);
- std::vector<Mat> outs;
- net.forward(outs, net.getUnconnectedOutLayersNames());
- for (int b = 0; b < batch_size; ++b)
- {
- std::vector<int> classIds;
- std::vector<float> confidences;
- std::vector<Rect2d> boxes;
- for (int i = 0; i < outs.size(); ++i)
- {
- Mat out;
- if (batch_size > 1){
- // get the sample slice from 3D matrix (batch, box, classes+5)
- Range ranges[3] = {Range(b, b+1), Range::all(), Range::all()};
- out = outs[i](ranges).reshape(1, outs[i].size[1]);
- }else{
- out = outs[i];
- }
- for (int j = 0; j < out.rows; ++j)
- {
- Mat scores = out.row(j).colRange(5, out.cols);
- double confidence;
- Point maxLoc;
- minMaxLoc(scores, 0, &confidence, 0, &maxLoc);
- if (confidence > confThreshold) {
- float* detection = out.ptr<float>(j);
- double centerX = detection[0];
- double centerY = detection[1];
- double width = detection[2];
- double height = detection[3];
- boxes.push_back(Rect2d(centerX - 0.5 * width, centerY - 0.5 * height,
- width, height));
- confidences.push_back(confidence);
- classIds.push_back(maxLoc.x);
- }
- }
- }
- // here we need NMS of boxes
- std::vector<int> indices;
- NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);
- std::vector<int> nms_classIds;
- std::vector<float> nms_confidences;
- std::vector<Rect2d> nms_boxes;
- for (size_t i = 0; i < indices.size(); ++i)
- {
- int idx = indices[i];
- Rect2d box = boxes[idx];
- float conf = confidences[idx];
- int class_id = classIds[idx];
- nms_boxes.push_back(box);
- nms_confidences.push_back(conf);
- nms_classIds.push_back(class_id);
- if (cvtest::debugLevel > 0)
- {
- std::cout << b << ", " << class_id << ", " << conf << "f, "
- << box.x << "f, " << box.y << "f, "
- << box.x + box.width << "f, " << box.y + box.height << "f,"
- << std::endl;
- }
- }
- if (cvIsNaN(iouDiff))
- {
- if (b == 0)
- std::cout << "Skip accuracy checks" << std::endl;
- continue;
- }
- normAssertDetections(refClassIds[b], refConfidences[b], refBoxes[b], nms_classIds,
- nms_confidences, nms_boxes, format("batch size %d, sample %d\n", batch_size, b).c_str(), confThreshold, scoreDiff, iouDiff);
- }
- }
- void testDarknetModel(const std::string& cfg, const std::string& weights,
- const std::vector<int>& refClassIds,
- const std::vector<float>& refConfidences,
- const std::vector<Rect2d>& refBoxes,
- double scoreDiff, double iouDiff, float confThreshold = 0.24, float nmsThreshold = 0.4)
- {
- testDarknetModel(cfg, weights,
- std::vector<std::vector<int> >(1, refClassIds),
- std::vector<std::vector<float> >(1, refConfidences),
- std::vector<std::vector<Rect2d> >(1, refBoxes),
- scoreDiff, iouDiff, confThreshold, nmsThreshold);
- }
- void testDarknetModel(const std::string& cfg, const std::string& weights,
- const cv::Mat& ref, double scoreDiff, double iouDiff,
- float confThreshold = 0.24, float nmsThreshold = 0.4)
- {
- CV_Assert(ref.cols == 7);
- std::vector<std::vector<int> > refClassIds;
- std::vector<std::vector<float> > refScores;
- std::vector<std::vector<Rect2d> > refBoxes;
- for (int i = 0; i < ref.rows; ++i)
- {
- int batchId = static_cast<int>(ref.at<float>(i, 0));
- int classId = static_cast<int>(ref.at<float>(i, 1));
- float score = ref.at<float>(i, 2);
- float left = ref.at<float>(i, 3);
- float top = ref.at<float>(i, 4);
- float right = ref.at<float>(i, 5);
- float bottom = ref.at<float>(i, 6);
- Rect2d box(left, top, right - left, bottom - top);
- if (batchId >= refClassIds.size())
- {
- refClassIds.resize(batchId + 1);
- refScores.resize(batchId + 1);
- refBoxes.resize(batchId + 1);
- }
- refClassIds[batchId].push_back(classId);
- refScores[batchId].push_back(score);
- refBoxes[batchId].push_back(box);
- }
- testDarknetModel(cfg, weights, refClassIds, refScores, refBoxes,
- scoreDiff, iouDiff, confThreshold, nmsThreshold);
- }
- };
- TEST_P(Test_Darknet_nets, YoloVoc)
- {
- applyTestTag(
- #if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL)
- CV_TEST_TAG_MEMORY_2GB,
- #else
- CV_TEST_TAG_MEMORY_1GB,
- #endif
- CV_TEST_TAG_LONG
- );
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
- #endif
- #if defined(INF_ENGINE_RELEASE)
- if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) &&
- target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); // need to update check function
- #endif
- // batchId, classId, confidence, left, top, right, bottom
- Mat ref = (Mat_<float>(6, 7) << 0, 6, 0.750469f, 0.577374f, 0.127391f, 0.902949f, 0.300809f, // a car
- 0, 1, 0.780879f, 0.270762f, 0.264102f, 0.732475f, 0.745412f, // a bicycle
- 0, 11, 0.901615f, 0.1386f, 0.338509f, 0.421337f, 0.938789f, // a dog
- 1, 14, 0.623813f, 0.183179f, 0.381921f, 0.247726f, 0.625847f, // a person
- 1, 6, 0.667770f, 0.446555f, 0.453578f, 0.499986f, 0.519167f, // a car
- 1, 6, 0.844947f, 0.637058f, 0.460398f, 0.828508f, 0.66427f); // a car
- double nmsThreshold = (target == DNN_TARGET_MYRIAD) ? 0.397 : 0.4;
- double scoreDiff = 8e-5, iouDiff = 3e-4;
- if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
- {
- scoreDiff = 1e-2;
- iouDiff = 0.018;
- }
- else if (target == DNN_TARGET_CUDA_FP16)
- {
- scoreDiff = 0.03;
- iouDiff = 0.018;
- }
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- // accuracy
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- {
- iouDiff = std::numeric_limits<double>::quiet_NaN();
- }
- #endif
- std::string config_file = "yolo-voc.cfg";
- std::string weights_file = "yolo-voc.weights";
- {
- SCOPED_TRACE("batch size 1");
- testDarknetModel(config_file, weights_file, ref.rowRange(0, 3), scoreDiff, iouDiff);
- }
- {
- SCOPED_TRACE("batch size 2");
- testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff, 0.24, nmsThreshold);
- }
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- // accuracy
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- }
- TEST_P(Test_Darknet_nets, TinyYoloVoc)
- {
- applyTestTag(CV_TEST_TAG_MEMORY_512MB);
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #if defined(INF_ENGINE_RELEASE)
- if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) &&
- target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); // need to update check function
- #endif
- // batchId, classId, confidence, left, top, right, bottom
- Mat ref = (Mat_<float>(4, 7) << 0, 6, 0.761967f, 0.579042f, 0.159161f, 0.894482f, 0.31994f, // a car
- 0, 11, 0.780595f, 0.129696f, 0.386467f, 0.445275f, 0.920994f, // a dog
- 1, 6, 0.651450f, 0.460526f, 0.458019f, 0.522527f, 0.5341f, // a car
- 1, 6, 0.928758f, 0.651024f, 0.463539f, 0.823784f, 0.654998f); // a car
- double scoreDiff = 8e-5, iouDiff = 3e-4;
- if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
- {
- scoreDiff = 8e-3;
- iouDiff = 0.018;
- }
- else if(target == DNN_TARGET_CUDA_FP16)
- {
- scoreDiff = 0.008;
- iouDiff = 0.02;
- }
- std::string config_file = "tiny-yolo-voc.cfg";
- std::string weights_file = "tiny-yolo-voc.weights";
- {
- SCOPED_TRACE("batch size 1");
- testDarknetModel(config_file, weights_file, ref.rowRange(0, 2), scoreDiff, iouDiff);
- }
- {
- SCOPED_TRACE("batch size 2");
- testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff);
- }
- }
- #ifdef HAVE_INF_ENGINE
- static const std::chrono::milliseconds async_timeout(10000);
- typedef testing::TestWithParam<tuple<std::string, tuple<Backend, Target> > > Test_Darknet_nets_async;
- TEST_P(Test_Darknet_nets_async, Accuracy)
- {
- Backend backendId = get<0>(get<1>(GetParam()));
- Target targetId = get<1>(get<1>(GetParam()));
- std::string prefix = get<0>(GetParam());
- applyTestTag(CV_TEST_TAG_MEMORY_512MB);
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (INF_ENGINE_VER_MAJOR_LT(2019020000) && backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- #endif
- if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- throw SkipTestException("No support for async forward");
- #if defined(INF_ENGINE_RELEASE)
- #if INF_ENGINE_VER_MAJOR_GE(2021040000)
- if (targetId == DNN_TARGET_MYRIAD && prefix == "yolov3") // NC_OUT_OF_MEMORY
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #else
- if (targetId == DNN_TARGET_MYRIAD && prefix == "yolov4") // NC_OUT_OF_MEMORY
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #endif
- const int numInputs = 2;
- std::vector<Mat> inputs(numInputs);
- int blobSize[] = {1, 3, 416, 416};
- for (int i = 0; i < numInputs; ++i)
- {
- inputs[i].create(4, &blobSize[0], CV_32F);
- randu(inputs[i], 0, 1);
- }
- Net netSync = readNet(findDataFile("dnn/" + prefix + ".cfg"),
- findDataFile("dnn/" + prefix + ".weights", false));
- netSync.setPreferableBackend(backendId);
- netSync.setPreferableTarget(targetId);
- // Run synchronously.
- std::vector<Mat> refs(numInputs);
- for (int i = 0; i < numInputs; ++i)
- {
- netSync.setInput(inputs[i]);
- refs[i] = netSync.forward().clone();
- }
- Net netAsync = readNet(findDataFile("dnn/" + prefix + ".cfg"),
- findDataFile("dnn/" + prefix + ".weights", false));
- netAsync.setPreferableBackend(backendId);
- netAsync.setPreferableTarget(targetId);
- double l1 = 0.0;
- double lInf = 0.0;
- #if defined(INF_ENGINE_RELEASE)
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- {
- if (targetId == DNN_TARGET_MYRIAD && prefix == "yolo-voc")
- {
- l1 = 0.02;
- lInf = 0.15;
- }
- if (targetId == DNN_TARGET_OPENCL_FP16 && prefix == "yolo-voc")
- {
- l1 = 0.02;
- lInf = 0.1;
- }
- if (targetId == DNN_TARGET_OPENCL_FP16 && prefix == "yolov3")
- {
- l1 = 0.001;
- lInf = 0.007;
- }
- if (targetId == DNN_TARGET_OPENCL_FP16 && prefix == "yolov4")
- {
- l1 = 0.001;
- lInf = 0.005;
- }
- }
- #endif
- // Run asynchronously. To make test more robust, process inputs in the reversed order.
- for (int i = numInputs - 1; i >= 0; --i)
- {
- netAsync.setInput(inputs[i]);
- AsyncArray out = netAsync.forwardAsync();
- ASSERT_TRUE(out.valid());
- Mat result;
- EXPECT_TRUE(out.get(result, async_timeout));
- normAssert(refs[i], result, format("Index: %d", i).c_str(), l1, lInf);
- }
- }
- INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_nets_async, Combine(
- Values("yolo-voc", "tiny-yolo-voc", "yolov3", "yolov4", "yolov4-tiny"),
- dnnBackendsAndTargets()
- ));
- #endif
- TEST_P(Test_Darknet_nets, YOLOv3)
- {
- applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB));
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- // batchId, classId, confidence, left, top, right, bottom
- const int N0 = 3;
- const int N1 = 6;
- static const float ref_[/* (N0 + N1) * 7 */] = {
- 0, 16, 0.998836f, 0.160024f, 0.389964f, 0.417885f, 0.943716f,
- 0, 1, 0.987908f, 0.150913f, 0.221933f, 0.742255f, 0.746261f,
- 0, 7, 0.952983f, 0.614621f, 0.150257f, 0.901368f, 0.289251f,
- 1, 2, 0.997412f, 0.647584f, 0.459939f, 0.821037f, 0.663947f,
- 1, 2, 0.989633f, 0.450719f, 0.463353f, 0.496306f, 0.522258f,
- 1, 0, 0.980053f, 0.195856f, 0.378454f, 0.258626f, 0.629257f,
- 1, 9, 0.785341f, 0.665503f, 0.373543f, 0.688893f, 0.439244f,
- 1, 9, 0.733275f, 0.376029f, 0.315694f, 0.401776f, 0.395165f,
- 1, 9, 0.384815f, 0.659824f, 0.372389f, 0.673927f, 0.429412f,
- };
- Mat ref(N0 + N1, 7, CV_32FC1, (void*)ref_);
- double scoreDiff = 8e-5, iouDiff = 3e-4;
- if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
- {
- scoreDiff = 0.006;
- iouDiff = 0.042;
- }
- else if (target == DNN_TARGET_CUDA_FP16)
- {
- scoreDiff = 0.04;
- iouDiff = 0.03;
- }
- std::string config_file = "yolov3.cfg";
- std::string weights_file = "yolov3.weights";
- #if defined(INF_ENGINE_RELEASE)
- if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
- backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD &&
- getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
- {
- scoreDiff = 0.04;
- iouDiff = 0.2;
- }
- #endif
- {
- SCOPED_TRACE("batch size 1");
- testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, iouDiff);
- }
- #if defined(INF_ENGINE_RELEASE)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- {
- if (target == DNN_TARGET_OPENCL)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- else if (target == DNN_TARGET_OPENCL_FP16 && INF_ENGINE_VER_MAJOR_LE(202010000))
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- else if (target == DNN_TARGET_MYRIAD &&
- getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
- }
- #endif
- {
- SCOPED_TRACE("batch size 2");
- testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff);
- }
- }
- TEST_P(Test_Darknet_nets, YOLOv4)
- {
- applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB));
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #if defined(INF_ENGINE_RELEASE)
- if (target == DNN_TARGET_MYRIAD) // NC_OUT_OF_MEMORY
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- // batchId, classId, confidence, left, top, right, bottom
- const int N0 = 3;
- const int N1 = 7;
- static const float ref_[/* (N0 + N1) * 7 */] = {
- 0, 16, 0.992194f, 0.172375f, 0.402458f, 0.403918f, 0.932801f,
- 0, 1, 0.988326f, 0.166708f, 0.228236f, 0.737208f, 0.735803f,
- 0, 7, 0.94639f, 0.602523f, 0.130399f, 0.901623f, 0.298452f,
- 1, 2, 0.99761f, 0.646556f, 0.45985f, 0.816041f, 0.659067f,
- 1, 0, 0.988913f, 0.201726f, 0.360282f, 0.266181f, 0.631728f,
- 1, 2, 0.98233f, 0.452007f, 0.462217f, 0.495612f, 0.521687f,
- 1, 9, 0.919195f, 0.374642f, 0.316524f, 0.398126f, 0.393714f,
- 1, 9, 0.856303f, 0.666842f, 0.372215f, 0.685539f, 0.44141f,
- 1, 9, 0.313516f, 0.656791f, 0.374734f, 0.671959f, 0.438371f,
- 1, 9, 0.256625f, 0.940232f, 0.326931f, 0.967586f, 0.374002f,
- };
- Mat ref(N0 + N1, 7, CV_32FC1, (void*)ref_);
- double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.006 : 8e-5;
- double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.042 : 3e-4;
- if (target == DNN_TARGET_CUDA_FP16)
- {
- scoreDiff = 0.008;
- iouDiff = 0.03;
- }
- std::string config_file = "yolov4.cfg";
- std::string weights_file = "yolov4.weights";
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- // accuracy (batch 1)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- {
- iouDiff = std::numeric_limits<double>::quiet_NaN();
- }
- #endif
- #if defined(INF_ENGINE_RELEASE)
- if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
- backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD &&
- getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
- {
- scoreDiff = 0.04;
- iouDiff = 0.2;
- }
- #endif
- {
- SCOPED_TRACE("batch size 1");
- testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, iouDiff);
- }
- {
- SCOPED_TRACE("batch size 2");
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- // accuracy (batch 1)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- {
- iouDiff = 0.45f;
- }
- #endif
- #if defined(INF_ENGINE_RELEASE)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- {
- if (target == DNN_TARGET_OPENCL)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- else if (target == DNN_TARGET_OPENCL_FP16 && INF_ENGINE_VER_MAJOR_LE(202010000))
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- else if (target == DNN_TARGET_MYRIAD &&
- getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
- }
- #endif
- testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff);
- }
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- // accuracy
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- }
- TEST_P(Test_Darknet_nets, YOLOv4_tiny)
- {
- applyTestTag(
- target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB
- );
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000) // nGraph compilation failure
- if (target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- const double confThreshold = 0.5;
- // batchId, classId, confidence, left, top, right, bottom
- const int N0 = 2;
- const int N1 = 3;
- static const float ref_[/* (N0 + N1) * 7 */] = {
- 0, 7, 0.85935f, 0.593484f, 0.141211f, 0.920356f, 0.291593f,
- 0, 16, 0.795188f, 0.169207f, 0.386886f, 0.423753f, 0.933004f,
- 1, 2, 0.996832f, 0.653802f, 0.464573f, 0.815193f, 0.653292f,
- 1, 2, 0.963325f, 0.451151f, 0.458915f, 0.496255f, 0.52241f,
- 1, 0, 0.926244f, 0.194851f, 0.361743f, 0.260277f, 0.632364f,
- };
- Mat ref(N0 + N1, 7, CV_32FC1, (void*)ref_);
- double scoreDiff = 0.01f;
- double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.15 : 0.01f;
- if (target == DNN_TARGET_CUDA_FP16)
- iouDiff = 0.02;
- std::string config_file = "yolov4-tiny.cfg";
- std::string weights_file = "yolov4-tiny.weights";
- #if defined(INF_ENGINE_RELEASE)
- if (target == DNN_TARGET_MYRIAD) // bad accuracy
- iouDiff = std::numeric_limits<double>::quiet_NaN();
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL)
- iouDiff = std::numeric_limits<double>::quiet_NaN();
- if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
- backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_OPENCL_FP16)
- iouDiff = std::numeric_limits<double>::quiet_NaN();
- #endif
- {
- SCOPED_TRACE("batch size 1");
- testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, iouDiff, confThreshold);
- }
- {
- SCOPED_TRACE("batch size 2");
- testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff, confThreshold);
- }
- #if defined(INF_ENGINE_RELEASE)
- if (target == DNN_TARGET_MYRIAD) // bad accuracy
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
- backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- }
- TEST_P(Test_Darknet_nets, YOLOv4x_mish)
- {
- applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB));
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- // IE exception: Ngraph operation Transpose with name permute_168 has dynamic output shape on 0 port, but CPU plug-in supports only static shape
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
- CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
- );
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #if defined(INF_ENGINE_RELEASE)
- if (target == DNN_TARGET_MYRIAD) // NC_OUT_OF_MEMORY
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- // batchId, classId, confidence, left, top, right, bottom
- const int N0 = 3;
- const int N1 = 5;
- static const float ref_[/* (N0 + N1) * 7 */] = {
- 0, 16, 0.925536f, 0.17188f, 0.386832f, 0.406138f, 0.941696f,
- 0, 1, 0.912028f, 0.162125f, 0.208863f, 0.741316f, 0.729332f,
- 0, 7, 0.841018f, 0.608953f, 0.128653f, 0.900692f, 0.295657f,
- 1, 2, 0.925697f, 0.650438f, 0.458118f, 0.813927f, 0.661775f,
- 1, 0, 0.882156f, 0.203644f, 0.365763f, 0.265473f, 0.632195f,
- 1, 2, 0.848857f, 0.451044f, 0.462997f, 0.496629f, 0.522719f,
- 1, 9, 0.736015f, 0.374503f, 0.316029f, 0.399358f, 0.392883f,
- 1, 9, 0.727129f, 0.662469f, 0.373687f, 0.687877f, 0.441335f,
- };
- Mat ref(N0 + N1, 7, CV_32FC1, (void*)ref_);
- double scoreDiff = 8e-5;
- double iouDiff = 3e-4;
- if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CUDA_FP16)
- {
- scoreDiff = 0.006;
- iouDiff = 0.042;
- }
- std::string config_file = "yolov4x-mish.cfg";
- std::string weights_file = "yolov4x-mish.weights";
- #if defined(INF_ENGINE_RELEASE)
- if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
- backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD &&
- getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
- {
- scoreDiff = 0.04;
- iouDiff = 0.2;
- }
- #endif
- {
- SCOPED_TRACE("batch size 1");
- testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, iouDiff);
- }
- {
- SCOPED_TRACE("batch size 2");
- #if defined(INF_ENGINE_RELEASE)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- {
- if (target == DNN_TARGET_OPENCL)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- else if (target == DNN_TARGET_OPENCL_FP16 && INF_ENGINE_VER_MAJOR_LE(202010000))
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- else if (target == DNN_TARGET_MYRIAD &&
- getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
- }
- #endif
- testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff);
- }
- }
- INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_nets, dnnBackendsAndTargets());
- TEST_P(Test_Darknet_layers, shortcut)
- {
- testDarknetLayer("shortcut");
- testDarknetLayer("shortcut_leaky");
- testDarknetLayer("shortcut_unequal");
- testDarknetLayer("shortcut_unequal_2");
- }
- TEST_P(Test_Darknet_layers, upsample)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception
- #endif
- testDarknetLayer("upsample");
- }
- TEST_P(Test_Darknet_layers, mish)
- {
- testDarknetLayer("mish", true);
- }
- TEST_P(Test_Darknet_layers, tanh)
- {
- testDarknetLayer("tanh");
- }
- TEST_P(Test_Darknet_layers, avgpool_softmax)
- {
- testDarknetLayer("avgpool_softmax");
- }
- TEST_P(Test_Darknet_layers, region)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && INF_ENGINE_VER_MAJOR_GE(2020020000))
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- // accuracy on CPU, OpenCL
- // Expected: (normInf) <= (lInf), actual: 0.763223 vs 0.0001
- // |ref| = 1.207319974899292
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
- CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
- );
- #endif
- testDarknetLayer("region");
- }
- TEST_P(Test_Darknet_layers, reorg)
- {
- testDarknetLayer("reorg");
- }
- TEST_P(Test_Darknet_layers, route)
- {
- testDarknetLayer("route");
- testDarknetLayer("route_multi");
- }
- TEST_P(Test_Darknet_layers, maxpool)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- testDarknetLayer("maxpool");
- }
- TEST_P(Test_Darknet_layers, convolutional)
- {
- if (target == DNN_TARGET_MYRIAD)
- {
- default_l1 = 0.01f;
- }
- testDarknetLayer("convolutional", true);
- }
- TEST_P(Test_Darknet_layers, scale_channels)
- {
- bool testBatches = backend == DNN_BACKEND_CUDA;
- testDarknetLayer("scale_channels", false, testBatches);
- }
- TEST_P(Test_Darknet_layers, connected)
- {
- if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- testDarknetLayer("connected", true);
- }
- TEST_P(Test_Darknet_layers, relu)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
- testDarknetLayer("relu");
- }
- TEST_P(Test_Darknet_layers, sam)
- {
- testDarknetLayer("sam", true);
- }
- INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_layers, dnnBackendsAndTargets());
- }} // namespace
|