123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- #ifndef __OPENCV_TEST_COMMON_HPP__
- #define __OPENCV_TEST_COMMON_HPP__
- #include "opencv2/dnn/utils/inference_engine.hpp"
- #ifdef HAVE_OPENCL
- #include "opencv2/core/ocl.hpp"
- #endif
- // src/op_inf_engine.hpp
- #define INF_ENGINE_VER_MAJOR_GT(ver) (((INF_ENGINE_RELEASE) / 10000) > ((ver) / 10000))
- #define INF_ENGINE_VER_MAJOR_GE(ver) (((INF_ENGINE_RELEASE) / 10000) >= ((ver) / 10000))
- #define INF_ENGINE_VER_MAJOR_LT(ver) (((INF_ENGINE_RELEASE) / 10000) < ((ver) / 10000))
- #define INF_ENGINE_VER_MAJOR_LE(ver) (((INF_ENGINE_RELEASE) / 10000) <= ((ver) / 10000))
- #define INF_ENGINE_VER_MAJOR_EQ(ver) (((INF_ENGINE_RELEASE) / 10000) == ((ver) / 10000))
- #define CV_TEST_TAG_DNN_SKIP_OPENCV_BACKEND "dnn_skip_opencv_backend"
- #define CV_TEST_TAG_DNN_SKIP_HALIDE "dnn_skip_halide"
- #define CV_TEST_TAG_DNN_SKIP_CPU "dnn_skip_cpu"
- #define CV_TEST_TAG_DNN_SKIP_OPENCL "dnn_skip_ocl"
- #define CV_TEST_TAG_DNN_SKIP_OPENCL_FP16 "dnn_skip_ocl_fp16"
- #define CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER "dnn_skip_ie_nn_builder"
- #define CV_TEST_TAG_DNN_SKIP_IE_NGRAPH "dnn_skip_ie_ngraph"
- #define CV_TEST_TAG_DNN_SKIP_IE "dnn_skip_ie"
- #define CV_TEST_TAG_DNN_SKIP_IE_2018R5 "dnn_skip_ie_2018r5"
- #define CV_TEST_TAG_DNN_SKIP_IE_2019R1 "dnn_skip_ie_2019r1"
- #define CV_TEST_TAG_DNN_SKIP_IE_2019R1_1 "dnn_skip_ie_2019r1_1"
- #define CV_TEST_TAG_DNN_SKIP_IE_2019R2 "dnn_skip_ie_2019r2"
- #define CV_TEST_TAG_DNN_SKIP_IE_2019R3 "dnn_skip_ie_2019r3"
- #define CV_TEST_TAG_DNN_SKIP_IE_CPU "dnn_skip_ie_cpu"
- #define CV_TEST_TAG_DNN_SKIP_IE_OPENCL "dnn_skip_ie_ocl"
- #define CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16 "dnn_skip_ie_ocl_fp16"
- #define CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2 "dnn_skip_ie_myriad2"
- #define CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X "dnn_skip_ie_myriadx"
- #define CV_TEST_TAG_DNN_SKIP_IE_MYRIAD CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X
- #define CV_TEST_TAG_DNN_SKIP_IE_ARM_CPU "dnn_skip_ie_arm_cpu"
- #define CV_TEST_TAG_DNN_SKIP_VULKAN "dnn_skip_vulkan"
- #define CV_TEST_TAG_DNN_SKIP_CUDA "dnn_skip_cuda"
- #define CV_TEST_TAG_DNN_SKIP_CUDA_FP16 "dnn_skip_cuda_fp16"
- #define CV_TEST_TAG_DNN_SKIP_CUDA_FP32 "dnn_skip_cuda_fp32"
- #define CV_TEST_TAG_DNN_SKIP_ONNX_CONFORMANCE "dnn_skip_onnx_conformance"
- #define CV_TEST_TAG_DNN_SKIP_PARSER "dnn_skip_parser"
- #ifdef HAVE_INF_ENGINE
- #if INF_ENGINE_VER_MAJOR_EQ(2018050000)
- # define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2018R5
- #elif INF_ENGINE_VER_MAJOR_EQ(2019010000)
- # if INF_ENGINE_RELEASE < 2019010100
- # define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R1
- # else
- # define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R1_1
- # endif
- #elif INF_ENGINE_VER_MAJOR_EQ(2019020000)
- # define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R2
- #elif INF_ENGINE_VER_MAJOR_EQ(2019030000)
- # define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R3
- #endif
- #endif // HAVE_INF_ENGINE
- #ifndef CV_TEST_TAG_DNN_SKIP_IE_VERSION
- # define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE
- #endif
- namespace cv { namespace dnn {
- CV__DNN_INLINE_NS_BEGIN
- void PrintTo(const cv::dnn::Backend& v, std::ostream* os);
- void PrintTo(const cv::dnn::Target& v, std::ostream* os);
- using opencv_test::tuple;
- using opencv_test::get;
- void PrintTo(const tuple<cv::dnn::Backend, cv::dnn::Target> v, std::ostream* os);
- CV__DNN_INLINE_NS_END
- }} // namespace cv::dnn
- namespace opencv_test {
- void initDNNTests();
- using namespace cv::dnn;
- static inline const std::string &getOpenCVExtraDir()
- {
- return cvtest::TS::ptr()->get_data_path();
- }
- void normAssert(
- cv::InputArray ref, cv::InputArray test, const char *comment = "",
- double l1 = 0.00001, double lInf = 0.0001);
- std::vector<cv::Rect2d> matToBoxes(const cv::Mat& m);
- void normAssertDetections(
- const std::vector<int>& refClassIds,
- const std::vector<float>& refScores,
- const std::vector<cv::Rect2d>& refBoxes,
- const std::vector<int>& testClassIds,
- const std::vector<float>& testScores,
- const std::vector<cv::Rect2d>& testBoxes,
- const char *comment = "", double confThreshold = 0.0,
- double scores_diff = 1e-5, double boxes_iou_diff = 1e-4);
- // For SSD-based object detection networks which produce output of shape 1x1xNx7
- // where N is a number of detections and an every detection is represented by
- // a vector [batchId, classId, confidence, left, top, right, bottom].
- void normAssertDetections(
- cv::Mat ref, cv::Mat out, const char *comment = "",
- double confThreshold = 0.0, double scores_diff = 1e-5,
- double boxes_iou_diff = 1e-4);
- // For text detection networks
- // Curved text polygon is not supported in the current version.
- // (concave polygon is invalid input to intersectConvexConvex)
- void normAssertTextDetections(
- const std::vector<std::vector<Point>>& gtPolys,
- const std::vector<std::vector<Point>>& testPolys,
- const char *comment = "", double boxes_iou_diff = 1e-4);
- void readFileContent(const std::string& filename, CV_OUT std::vector<char>& content);
- #ifdef HAVE_INF_ENGINE
- bool validateVPUType();
- #endif
- testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargets(
- bool withInferenceEngine = true,
- bool withHalide = false,
- bool withCpuOCV = true,
- bool withVkCom = true,
- bool withCUDA = true,
- bool withNgraph = true,
- bool withWebnn = true
- );
- testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargetsIE();
- class DNNTestLayer : public TestWithParam<tuple<Backend, Target> >
- {
- public:
- dnn::Backend backend;
- dnn::Target target;
- double default_l1, default_lInf;
- DNNTestLayer()
- {
- backend = (dnn::Backend)(int)get<0>(GetParam());
- target = (dnn::Target)(int)get<1>(GetParam());
- getDefaultThresholds(backend, target, &default_l1, &default_lInf);
- }
- static void getDefaultThresholds(int backend, int target, double* l1, double* lInf)
- {
- if (target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
- {
- *l1 = 4e-3;
- *lInf = 2e-2;
- }
- else
- {
- *l1 = 1e-5;
- *lInf = 1e-4;
- }
- }
- static void checkBackend(int backend, int target, Mat* inp = 0, Mat* ref = 0)
- {
- CV_UNUSED(backend); CV_UNUSED(target); CV_UNUSED(inp); CV_UNUSED(ref);
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021000000)
- if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- && target == DNN_TARGET_MYRIAD)
- {
- if (inp && ref && inp->dims == 4 && ref->dims == 4 &&
- inp->size[0] != 1 && inp->size[0] != ref->size[0])
- {
- std::cout << "Inconsistent batch size of input and output blobs for Myriad plugin" << std::endl;
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
- }
- }
- #endif
- }
- void expectNoFallbacks(Net& net, bool raiseError = true)
- {
- // Check if all the layers are supported with current backend and target.
- // Some layers might be fused so their timings equal to zero.
- std::vector<double> timings;
- net.getPerfProfile(timings);
- std::vector<String> names = net.getLayerNames();
- CV_Assert(names.size() == timings.size());
- bool hasFallbacks = false;
- for (int i = 0; i < names.size(); ++i)
- {
- Ptr<dnn::Layer> l = net.getLayer(net.getLayerId(names[i]));
- bool fused = !timings[i];
- if ((!l->supportBackend(backend) || l->preferableTarget != target) && !fused)
- {
- hasFallbacks = true;
- std::cout << "FALLBACK: Layer [" << l->type << "]:[" << l->name << "] is expected to has backend implementation" << endl;
- }
- }
- if (hasFallbacks && raiseError)
- CV_Error(Error::StsNotImplemented, "Implementation fallbacks are not expected in this test");
- }
- void expectNoFallbacksFromIE(Net& net)
- {
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- expectNoFallbacks(net);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- expectNoFallbacks(net, false);
- }
- void expectNoFallbacksFromCUDA(Net& net)
- {
- if (backend == DNN_BACKEND_CUDA)
- expectNoFallbacks(net);
- }
- protected:
- void checkBackend(Mat* inp = 0, Mat* ref = 0)
- {
- checkBackend(backend, target, inp, ref);
- }
- };
- } // namespace
- #endif
|