123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- #include "npy_blob.hpp"
- #include <opencv2/dnn/shape_utils.hpp>
- namespace opencv_test { namespace {
- template<typename TString>
- static std::string _tf(TString filename)
- {
- return findDataFile(std::string("dnn/") + filename);
- }
- class Test_Caffe_nets : public DNNTestLayer
- {
- public:
- void testFaster(const std::string& proto, const std::string& model, const Mat& ref,
- double scoreDiff = 0.0, double iouDiff = 0.0)
- {
- checkBackend();
- Net net = readNetFromCaffe(findDataFile("dnn/" + proto),
- findDataFile("dnn/" + model, false));
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- Mat img = imread(findDataFile("dnn/dog416.png"));
- resize(img, img, Size(800, 600));
- Mat blob = blobFromImage(img, 1.0, Size(), Scalar(102.9801, 115.9465, 122.7717), false, false);
- Mat imInfo = (Mat_<float>(1, 3) << img.rows, img.cols, 1.6f);
- net.setInput(blob, "data");
- net.setInput(imInfo, "im_info");
- // Output has shape 1x1xNx7 where N - number of detections.
- // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
- Mat out = net.forward();
- scoreDiff = scoreDiff ? scoreDiff : default_l1;
- iouDiff = iouDiff ? iouDiff : default_lInf;
- normAssertDetections(ref, out, ("model name: " + model).c_str(), 0.8, scoreDiff, iouDiff);
- }
- };
- TEST(Test_Caffe, memory_read)
- {
- const string proto = findDataFile("dnn/bvlc_googlenet.prototxt");
- const string model = findDataFile("dnn/bvlc_googlenet.caffemodel", false);
- std::vector<char> dataProto;
- readFileContent(proto, dataProto);
- std::vector<char> dataModel;
- readFileContent(model, dataModel);
- Net net = readNetFromCaffe(dataProto.data(), dataProto.size());
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- ASSERT_FALSE(net.empty());
- Net net2 = readNetFromCaffe(dataProto.data(), dataProto.size(),
- dataModel.data(), dataModel.size());
- ASSERT_FALSE(net2.empty());
- }
- TEST(Test_Caffe, read_gtsrb)
- {
- Net net = readNetFromCaffe(_tf("gtsrb.prototxt"));
- ASSERT_FALSE(net.empty());
- }
- TEST(Test_Caffe, read_googlenet)
- {
- Net net = readNetFromCaffe(_tf("bvlc_googlenet.prototxt"));
- ASSERT_FALSE(net.empty());
- }
- TEST_P(Test_Caffe_nets, Axpy)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
- #endif
- String proto = _tf("axpy.prototxt");
- Net net = readNetFromCaffe(proto);
- checkBackend();
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- int size[] = {1, 2, 3, 4};
- int scale_size[] = {1, 2, 1, 1};
- Mat scale(4, &scale_size[0], CV_32F);
- Mat shift(4, &size[0], CV_32F);
- Mat inp(4, &size[0], CV_32F);
- randu(scale, -1.0f, 1.0f);
- randu(shift, -1.0f, 1.0f);
- randu(inp, -1.0f, 1.0f);
- net.setInput(scale, "scale");
- net.setInput(shift, "shift");
- net.setInput(inp, "data");
- Mat out = net.forward();
- Mat ref(4, &size[0], inp.type());
- for (int i = 0; i < inp.size[1]; i++) {
- for (int h = 0; h < inp.size[2]; h++) {
- for (int w = 0; w < inp.size[3]; w++) {
- int idx[] = {0, i, h, w};
- int scale_idx[] = {0, i, 0, 0};
- ref.at<float>(idx) = inp.at<float>(idx) * scale.at<float>(scale_idx) +
- shift.at<float>(idx);
- }
- }
- }
- float l1 = 1e-5, lInf = 1e-4;
- if (target == DNN_TARGET_OPENCL_FP16)
- {
- l1 = 2e-4;
- lInf = 1e-3;
- }
- if (target == DNN_TARGET_MYRIAD)
- {
- l1 = 0.001;
- lInf = 0.001;
- }
- if(target == DNN_TARGET_CUDA_FP16)
- {
- l1 = 0.0002;
- lInf = 0.0007;
- }
- normAssert(ref, out, "", l1, lInf);
- }
- typedef testing::TestWithParam<tuple<bool, Target> > Reproducibility_AlexNet;
- TEST_P(Reproducibility_AlexNet, Accuracy)
- {
- Target targetId = get<1>(GetParam());
- #if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL)
- applyTestTag(CV_TEST_TAG_MEMORY_2GB);
- #else
- applyTestTag(targetId == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
- #endif
- ASSERT_TRUE(ocl::useOpenCL() || targetId == DNN_TARGET_CPU);
- bool readFromMemory = get<0>(GetParam());
- Net net;
- {
- const string proto = findDataFile("dnn/bvlc_alexnet.prototxt");
- const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false);
- if (readFromMemory)
- {
- std::vector<char> dataProto;
- readFileContent(proto, dataProto);
- std::vector<char> dataModel;
- readFileContent(model, dataModel);
- net = readNetFromCaffe(dataProto.data(), dataProto.size(),
- dataModel.data(), dataModel.size());
- }
- else
- net = readNetFromCaffe(proto, model);
- ASSERT_FALSE(net.empty());
- }
- // Test input layer size
- std::vector<MatShape> inLayerShapes;
- std::vector<MatShape> outLayerShapes;
- net.getLayerShapes(MatShape(), 0, inLayerShapes, outLayerShapes);
- ASSERT_FALSE(inLayerShapes.empty());
- ASSERT_EQ(inLayerShapes[0].size(), 4);
- ASSERT_EQ(inLayerShapes[0][0], 1);
- ASSERT_EQ(inLayerShapes[0][1], 3);
- ASSERT_EQ(inLayerShapes[0][2], 227);
- ASSERT_EQ(inLayerShapes[0][3], 227);
- const float l1 = 1e-5;
- const float lInf = (targetId == DNN_TARGET_OPENCL_FP16) ? 4e-3 : 1e-4;
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- net.setPreferableTarget(targetId);
- Mat sample = imread(_tf("grace_hopper_227.png"));
- ASSERT_TRUE(!sample.empty());
- net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar(), false), "data");
- Mat out = net.forward("prob");
- Mat ref = blobFromNPY(_tf("caffe_alexnet_prob.npy"));
- normAssert(ref, out, "", l1, lInf);
- }
- INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_AlexNet, Combine(testing::Bool(),
- testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV))));
- TEST(Reproducibility_FCN, Accuracy)
- {
- applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG, CV_TEST_TAG_MEMORY_2GB);
- Net net;
- {
- const string proto = findDataFile("dnn/fcn8s-heavy-pascal.prototxt");
- const string model = findDataFile("dnn/fcn8s-heavy-pascal.caffemodel", false);
- net = readNetFromCaffe(proto, model);
- ASSERT_FALSE(net.empty());
- }
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- Mat sample = imread(_tf("street.png"));
- ASSERT_TRUE(!sample.empty());
- std::vector<int> layerIds;
- std::vector<size_t> weights, blobs;
- net.getMemoryConsumption(shape(1,3,227,227), layerIds, weights, blobs);
- net.setInput(blobFromImage(sample, 1.0f, Size(500, 500), Scalar(), false), "data");
- Mat out = net.forward("score");
- Mat refData = imread(_tf("caffe_fcn8s_prob.png"), IMREAD_ANYDEPTH);
- int shape[] = {1, 21, 500, 500};
- Mat ref(4, shape, CV_32FC1, refData.data);
- normAssert(ref, out);
- }
- TEST(Reproducibility_SSD, Accuracy)
- {
- applyTestTag(CV_TEST_TAG_MEMORY_512MB, CV_TEST_TAG_DEBUG_LONG);
- Net net;
- {
- const string proto = findDataFile("dnn/ssd_vgg16.prototxt");
- const string model = findDataFile("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", false);
- net = readNetFromCaffe(proto, model);
- ASSERT_FALSE(net.empty());
- }
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- Mat sample = imread(_tf("street.png"));
- ASSERT_TRUE(!sample.empty());
- if (sample.channels() == 4)
- cvtColor(sample, sample, COLOR_BGRA2BGR);
- Mat in_blob = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
- net.setInput(in_blob, "data");
- Mat out = net.forward("detection_out");
- Mat ref = blobFromNPY(_tf("ssd_out.npy"));
- normAssertDetections(ref, out, "", FLT_MIN);
- }
- typedef testing::TestWithParam<tuple<Backend, Target> > Reproducibility_MobileNet_SSD;
- TEST_P(Reproducibility_MobileNet_SSD, Accuracy)
- {
- const string proto = findDataFile("dnn/MobileNetSSD_deploy.prototxt", false);
- const string model = findDataFile("dnn/MobileNetSSD_deploy.caffemodel", false);
- Net net = readNetFromCaffe(proto, model);
- int backendId = get<0>(GetParam());
- int targetId = get<1>(GetParam());
- net.setPreferableBackend(backendId);
- net.setPreferableTarget(targetId);
- Mat sample = imread(_tf("street.png"));
- Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
- net.setInput(inp);
- Mat out = net.forward().clone();
- ASSERT_EQ(out.size[2], 100);
- float scores_diff = 1e-5, boxes_iou_diff = 1e-4;
- if (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD)
- {
- scores_diff = 1.5e-2;
- boxes_iou_diff = 6.3e-2;
- }
- else if (targetId == DNN_TARGET_CUDA_FP16)
- {
- scores_diff = 0.015;
- boxes_iou_diff = 0.07;
- }
- Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy"));
- normAssertDetections(ref, out, "", FLT_MIN, scores_diff, boxes_iou_diff);
- // Check that detections aren't preserved.
- inp.setTo(0.0f);
- net.setInput(inp);
- Mat zerosOut = net.forward();
- zerosOut = zerosOut.reshape(1, zerosOut.total() / 7);
- const int numDetections = zerosOut.rows;
- // TODO: fix it
- if (targetId != DNN_TARGET_MYRIAD ||
- getInferenceEngineVPUType() != CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
- {
- ASSERT_NE(numDetections, 0);
- for (int i = 0; i < numDetections; ++i)
- {
- float confidence = zerosOut.ptr<float>(i)[2];
- ASSERT_EQ(confidence, 0);
- }
- }
- // There is something wrong with Reshape layer in Myriad plugin.
- if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019
- || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH
- )
- {
- if (targetId == DNN_TARGET_MYRIAD || targetId == DNN_TARGET_OPENCL_FP16)
- return;
- }
- // Check batching mode.
- inp = blobFromImages(std::vector<Mat>(2, sample), 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
- net.setInput(inp);
- Mat outBatch = net.forward();
- // Output blob has a shape 1x1x2Nx7 where N is a number of detection for
- // a single sample in batch. The first numbers of detection vectors are batch id.
- // For Inference Engine backend there is -1 delimiter which points the end of detections.
- const int numRealDetections = ref.size[2];
- EXPECT_EQ(outBatch.size[2], 2 * numDetections);
- out = out.reshape(1, numDetections).rowRange(0, numRealDetections);
- outBatch = outBatch.reshape(1, 2 * numDetections);
- for (int i = 0; i < 2; ++i)
- {
- Mat pred = outBatch.rowRange(i * numRealDetections, (i + 1) * numRealDetections);
- EXPECT_EQ(countNonZero(pred.col(0) != i), 0);
- normAssert(pred.colRange(1, 7), out.colRange(1, 7));
- }
- }
- INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_MobileNet_SSD, dnnBackendsAndTargets());
- typedef testing::TestWithParam<Target> Reproducibility_ResNet50;
- TEST_P(Reproducibility_ResNet50, Accuracy)
- {
- Target targetId = GetParam();
- applyTestTag(targetId == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
- ASSERT_TRUE(ocl::useOpenCL() || targetId == DNN_TARGET_CPU);
- Net net = readNetFromCaffe(findDataFile("dnn/ResNet-50-deploy.prototxt"),
- findDataFile("dnn/ResNet-50-model.caffemodel", false));
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- net.setPreferableTarget(targetId);
- float l1 = (targetId == DNN_TARGET_OPENCL_FP16) ? 3e-5 : 1e-5;
- float lInf = (targetId == DNN_TARGET_OPENCL_FP16) ? 6e-3 : 1e-4;
- Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(224,224), Scalar(), false);
- ASSERT_TRUE(!input.empty());
- net.setInput(input);
- Mat out = net.forward();
- Mat ref = blobFromNPY(_tf("resnet50_prob.npy"));
- normAssert(ref, out, "", l1, lInf);
- if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16)
- {
- UMat out_umat;
- net.forward(out_umat);
- normAssert(ref, out_umat, "out_umat", l1, lInf);
- std::vector<UMat> out_umats;
- net.forward(out_umats);
- normAssert(ref, out_umats[0], "out_umat_vector", l1, lInf);
- }
- }
- INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_ResNet50,
- testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV)));
- typedef testing::TestWithParam<Target> Reproducibility_SqueezeNet_v1_1;
- TEST_P(Reproducibility_SqueezeNet_v1_1, Accuracy)
- {
- int targetId = GetParam();
- if(targetId == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
- Net net = readNetFromCaffe(findDataFile("dnn/squeezenet_v1.1.prototxt"),
- findDataFile("dnn/squeezenet_v1.1.caffemodel", false));
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- net.setPreferableTarget(targetId);
- Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(227,227), Scalar(), false, true);
- ASSERT_TRUE(!input.empty());
- Mat out;
- if (targetId == DNN_TARGET_OPENCL)
- {
- // Firstly set a wrong input blob and run the model to receive a wrong output.
- // Then set a correct input blob to check CPU->GPU synchronization is working well.
- net.setInput(input * 2.0f);
- out = net.forward();
- }
- net.setInput(input);
- out = net.forward();
- Mat ref = blobFromNPY(_tf("squeezenet_v1.1_prob.npy"));
- normAssert(ref, out);
- }
- INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_SqueezeNet_v1_1,
- testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV)));
- TEST(Reproducibility_AlexNet_fp16, Accuracy)
- {
- applyTestTag(CV_TEST_TAG_MEMORY_512MB);
- const float l1 = 1e-5;
- const float lInf = 3e-3;
- const string proto = findDataFile("dnn/bvlc_alexnet.prototxt");
- const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false);
- shrinkCaffeModel(model, "bvlc_alexnet.caffemodel_fp16");
- Net net = readNetFromCaffe(proto, "bvlc_alexnet.caffemodel_fp16");
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- Mat sample = imread(findDataFile("dnn/grace_hopper_227.png"));
- net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar()));
- Mat out = net.forward();
- Mat ref = blobFromNPY(findDataFile("dnn/caffe_alexnet_prob.npy"));
- normAssert(ref, out, "", l1, lInf);
- }
- TEST(Reproducibility_GoogLeNet_fp16, Accuracy)
- {
- const float l1 = 1e-5;
- const float lInf = 3e-3;
- const string proto = findDataFile("dnn/bvlc_googlenet.prototxt");
- const string model = findDataFile("dnn/bvlc_googlenet.caffemodel", false);
- shrinkCaffeModel(model, "bvlc_googlenet.caffemodel_fp16");
- Net net = readNetFromCaffe(proto, "bvlc_googlenet.caffemodel_fp16");
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- std::vector<Mat> inpMats;
- inpMats.push_back( imread(_tf("googlenet_0.png")) );
- inpMats.push_back( imread(_tf("googlenet_1.png")) );
- ASSERT_TRUE(!inpMats[0].empty() && !inpMats[1].empty());
- net.setInput(blobFromImages(inpMats, 1.0f, Size(), Scalar(), false), "data");
- Mat out = net.forward("prob");
- Mat ref = blobFromNPY(_tf("googlenet_prob.npy"));
- normAssert(out, ref, "", l1, lInf);
- }
- // https://github.com/richzhang/colorization
- TEST_P(Test_Caffe_nets, Colorization)
- {
- applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
- checkBackend();
- Mat inp = blobFromNPY(_tf("colorization_inp.npy"));
- Mat ref = blobFromNPY(_tf("colorization_out.npy"));
- Mat kernel = blobFromNPY(_tf("colorization_pts_in_hull.npy"));
- const string proto = findDataFile("dnn/colorization_deploy_v2.prototxt", false);
- const string model = findDataFile("dnn/colorization_release_v2.caffemodel", false);
- Net net = readNetFromCaffe(proto, model);
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- net.getLayer(net.getLayerId("class8_ab"))->blobs.push_back(kernel);
- net.getLayer(net.getLayerId("conv8_313_rh"))->blobs.push_back(Mat(1, 313, CV_32F, 2.606));
- net.setInput(inp);
- Mat out = net.forward();
- // Reference output values are in range [-29.1, 69.5]
- double l1 = 4e-4, lInf = 3e-3;
- if (target == DNN_TARGET_OPENCL_FP16)
- {
- l1 = 0.25;
- lInf = 5.3;
- }
- else if (target == DNN_TARGET_MYRIAD)
- {
- l1 = (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) ? 0.5 : 0.25;
- lInf = (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) ? 11 : 5.3;
- }
- else if(target == DNN_TARGET_CUDA_FP16)
- {
- l1 = 0.21;
- lInf = 4.5;
- }
- #if defined(INF_ENGINE_RELEASE)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
- {
- l1 = 0.3; lInf = 10;
- }
- #endif
- normAssert(out, ref, "", l1, lInf);
- expectNoFallbacksFromIE(net);
- }
- TEST_P(Test_Caffe_nets, DenseNet_121)
- {
- applyTestTag(CV_TEST_TAG_MEMORY_512MB);
- checkBackend();
- const string proto = findDataFile("dnn/DenseNet_121.prototxt", false);
- const string weights = findDataFile("dnn/DenseNet_121.caffemodel", false);
- Mat inp = imread(_tf("dog416.png"));
- Model model(proto, weights);
- model.setInputScale(1.0 / 255).setInputSwapRB(true).setInputCrop(true);
- std::vector<Mat> outs;
- Mat ref = blobFromNPY(_tf("densenet_121_output.npy"));
- model.setPreferableBackend(backend);
- model.setPreferableTarget(target);
- model.predict(inp, outs);
- // Reference is an array of 1000 values from a range [-6.16, 7.9]
- float l1 = default_l1, lInf = default_lInf;
- if (target == DNN_TARGET_OPENCL_FP16)
- {
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019020000)
- l1 = 0.045; lInf = 0.21;
- #else
- l1 = 0.017; lInf = 0.0795;
- #endif
- }
- else if (target == DNN_TARGET_MYRIAD)
- {
- l1 = 0.11; lInf = 0.5;
- }
- else if (target == DNN_TARGET_CUDA_FP16)
- {
- l1 = 0.04; lInf = 0.2;
- }
- normAssert(outs[0], ref, "", l1, lInf);
- if (target != DNN_TARGET_MYRIAD || getInferenceEngineVPUType() != CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
- expectNoFallbacksFromIE(model.getNetwork_());
- }
- TEST(Test_Caffe, multiple_inputs)
- {
- const string proto = findDataFile("dnn/layers/net_input.prototxt");
- Net net = readNetFromCaffe(proto);
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- Mat first_image(10, 11, CV_32FC3);
- Mat second_image(10, 11, CV_32FC3);
- randu(first_image, -1, 1);
- randu(second_image, -1, 1);
- first_image = blobFromImage(first_image);
- second_image = blobFromImage(second_image);
- Mat first_image_blue_green = slice(first_image, Range::all(), Range(0, 2), Range::all(), Range::all());
- Mat first_image_red = slice(first_image, Range::all(), Range(2, 3), Range::all(), Range::all());
- Mat second_image_blue_green = slice(second_image, Range::all(), Range(0, 2), Range::all(), Range::all());
- Mat second_image_red = slice(second_image, Range::all(), Range(2, 3), Range::all(), Range::all());
- net.setInput(first_image_blue_green, "old_style_input_blue_green");
- net.setInput(first_image_red, "different_name_for_red");
- net.setInput(second_image_blue_green, "input_layer_blue_green");
- net.setInput(second_image_red, "old_style_input_red");
- Mat out = net.forward();
- normAssert(out, first_image + second_image);
- }
- TEST(Test_Caffe, shared_weights)
- {
- const string proto = findDataFile("dnn/layers/shared_weights.prototxt");
- const string model = findDataFile("dnn/layers/shared_weights.caffemodel");
- Net net = readNetFromCaffe(proto, model);
- Mat input_1 = (Mat_<float>(2, 2) << 0., 2., 4., 6.);
- Mat input_2 = (Mat_<float>(2, 2) << 1., 3., 5., 7.);
- Mat blob_1 = blobFromImage(input_1);
- Mat blob_2 = blobFromImage(input_2);
- net.setInput(blob_1, "input_1");
- net.setInput(blob_2, "input_2");
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- Mat sum = net.forward();
- EXPECT_EQ(sum.at<float>(0,0), 12.);
- EXPECT_EQ(sum.at<float>(0,1), 16.);
- }
- typedef testing::TestWithParam<tuple<std::string, Target> > opencv_face_detector;
- TEST_P(opencv_face_detector, Accuracy)
- {
- std::string proto = findDataFile("dnn/opencv_face_detector.prototxt");
- std::string model = findDataFile(get<0>(GetParam()), false);
- dnn::Target targetId = (dnn::Target)(int)get<1>(GetParam());
- Net net = readNetFromCaffe(proto, model);
- Mat img = imread(findDataFile("gpu/lbpcascade/er.png"));
- Mat blob = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false);
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- net.setPreferableTarget(targetId);
- net.setInput(blob);
- // Output has shape 1x1xNx7 where N - number of detections.
- // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
- Mat out = net.forward();
- Mat ref = (Mat_<float>(6, 7) << 0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631,
- 0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168,
- 0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290,
- 0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477,
- 0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494,
- 0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801);
- normAssertDetections(ref, out, "", 0.5, 1e-5, 2e-4);
- }
- // False positives bug for large faces: https://github.com/opencv/opencv/issues/15106
- TEST_P(opencv_face_detector, issue_15106)
- {
- std::string proto = findDataFile("dnn/opencv_face_detector.prototxt");
- std::string model = findDataFile(get<0>(GetParam()), false);
- dnn::Target targetId = (dnn::Target)(int)get<1>(GetParam());
- Net net = readNetFromCaffe(proto, model);
- Mat img = imread(findDataFile("cv/shared/lena.png"));
- img = img.rowRange(img.rows / 4, 3 * img.rows / 4).colRange(img.cols / 4, 3 * img.cols / 4);
- Mat blob = blobFromImage(img, 1.0, Size(300, 300), Scalar(104.0, 177.0, 123.0), false, false);
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- net.setPreferableTarget(targetId);
- net.setInput(blob);
- // Output has shape 1x1xNx7 where N - number of detections.
- // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
- Mat out = net.forward();
- Mat ref = (Mat_<float>(1, 7) << 0, 1, 0.9149431, 0.30424616, 0.26964942, 0.88733053, 0.99815309);
- normAssertDetections(ref, out, "", 0.2, 6e-5, 1e-4);
- }
- INSTANTIATE_TEST_CASE_P(Test_Caffe, opencv_face_detector,
- Combine(
- Values("dnn/opencv_face_detector.caffemodel",
- "dnn/opencv_face_detector_fp16.caffemodel"),
- Values(DNN_TARGET_CPU, DNN_TARGET_OPENCL)
- )
- );
- TEST_P(Test_Caffe_nets, FasterRCNN_vgg16)
- {
- applyTestTag(
- #if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL)
- CV_TEST_TAG_MEMORY_2GB, // utilizes ~1Gb, but huge blobs may not be allocated on 32-bit systems due memory fragmentation
- #else
- (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB),
- #endif
- CV_TEST_TAG_LONG,
- CV_TEST_TAG_DEBUG_VERYLONG
- );
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
- if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
- #endif
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- // IE exception: Ngraph operation Reshape with name rpn_cls_score_reshape has dynamic output shape on 0 port, but CPU plug-in supports only static shape
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
- CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
- );
- // Check 'backward_compatible_check || in_out_elements_equal' failed at core/src/op/reshape.cpp:390:
- // While validating node 'v1::Reshape bbox_pred_reshape (bbox_pred[0]:f32{1,84}, Constant_241202[0]:i64{4}) -> (f32{?,?,?,?})' with friendly_name 'bbox_pred_reshape':
- // Requested output shape {1,6300,4,1} is incompatible with input shape Shape{1, 84}
- if (target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- static Mat ref = (Mat_<float>(3, 7) << 0, 2, 0.949398, 99.2454, 210.141, 601.205, 462.849,
- 0, 7, 0.997022, 481.841, 92.3218, 722.685, 175.953,
- 0, 12, 0.993028, 133.221, 189.377, 350.994, 563.166);
- testFaster("faster_rcnn_vgg16.prototxt", "VGG16_faster_rcnn_final.caffemodel", ref);
- }
- TEST_P(Test_Caffe_nets, FasterRCNN_zf)
- {
- applyTestTag(
- #if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL)
- CV_TEST_TAG_MEMORY_2GB,
- #else
- (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB),
- #endif
- CV_TEST_TAG_DEBUG_LONG
- );
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- // IE exception: Ngraph operation Reshape with name rpn_cls_score_reshape has dynamic output shape on 0 port, but CPU plug-in supports only static shape
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
- applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
- CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
- );
- #endif
- if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
- backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
- if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
- backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
- if (target == DNN_TARGET_CUDA_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
- static Mat ref = (Mat_<float>(3, 7) << 0, 2, 0.90121, 120.407, 115.83, 570.586, 528.395,
- 0, 7, 0.988779, 469.849, 75.1756, 718.64, 186.762,
- 0, 12, 0.967198, 138.588, 206.843, 329.766, 553.176);
- testFaster("faster_rcnn_zf.prototxt", "ZF_faster_rcnn_final.caffemodel", ref);
- }
- TEST_P(Test_Caffe_nets, RFCN)
- {
- applyTestTag(
- (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_2GB),
- CV_TEST_TAG_LONG,
- CV_TEST_TAG_DEBUG_VERYLONG
- );
- #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
- // Exception: Function contains several inputs and outputs with one friendly name! (HETERO bug?)
- if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
- #endif
- if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
- backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_OPENCL_FP16)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
- if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
- backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD)
- applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
- float scoreDiff = default_l1, iouDiff = default_lInf;
- if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
- {
- scoreDiff = 4e-3;
- iouDiff = 8e-2;
- }
- if (target == DNN_TARGET_CUDA_FP16)
- {
- scoreDiff = 0.0034;
- iouDiff = 0.12;
- }
- static Mat ref = (Mat_<float>(2, 7) << 0, 7, 0.991359, 491.822, 81.1668, 702.573, 178.234,
- 0, 12, 0.94786, 132.093, 223.903, 338.077, 566.16);
- testFaster("rfcn_pascal_voc_resnet50.prototxt", "resnet50_rfcn_final.caffemodel", ref, scoreDiff, iouDiff);
- }
- INSTANTIATE_TEST_CASE_P(/**/, Test_Caffe_nets, dnnBackendsAndTargets());
- }} // namespace
|