1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- import numpy as np
- import sys
- import os
- import argparse
- import tensorflow as tf
- from tensorflow.python.platform import gfile
- from imagenet_cls_test_alexnet import MeanValueFetch, DnnCaffeModel, Framework, ClsAccEvaluation
- try:
- import cv2 as cv
- except ImportError:
- raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
- 'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
- # If you've got an exception "Cannot load libmkl_avx.so or libmkl_def.so" or similar, try to export next variable
- # before running the script:
- # LD_PRELOAD=/opt/intel/mkl/lib/intel64/libmkl_core.so:/opt/intel/mkl/lib/intel64/libmkl_sequential.so
- class TensorflowModel(Framework):
- sess = tf.Session
- output = tf.Graph
- def __init__(self, model_file, in_blob_name, out_blob_name):
- self.in_blob_name = in_blob_name
- self.sess = tf.Session()
- with gfile.FastGFile(model_file, 'rb') as f:
- graph_def = tf.GraphDef()
- graph_def.ParseFromString(f.read())
- self.sess.graph.as_default()
- tf.import_graph_def(graph_def, name='')
- self.output = self.sess.graph.get_tensor_by_name(out_blob_name + ":0")
- def get_name(self):
- return 'Tensorflow'
- def get_output(self, input_blob):
- assert len(input_blob.shape) == 4
- batch_tf = input_blob.transpose(0, 2, 3, 1)
- out = self.sess.run(self.output,
- {self.in_blob_name+':0': batch_tf})
- out = out[..., 1:1001]
- return out
- class DnnTfInceptionModel(DnnCaffeModel):
- net = cv.dnn.Net()
- def __init__(self, model_file, in_blob_name, out_blob_name):
- self.net = cv.dnn.readNetFromTensorflow(model_file)
- self.in_blob_name = in_blob_name
- self.out_blob_name = out_blob_name
- def get_output(self, input_blob):
- return super(DnnTfInceptionModel, self).get_output(input_blob)[..., 1:1001]
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument("--imgs_dir", help="path to ImageNet validation subset images dir, ILSVRC2012_img_val dir")
- parser.add_argument("--img_cls_file", help="path to file with classes ids for images, download it here:"
- "https://github.com/opencv/opencv_extra/tree/4.x/testdata/dnn/img_classes_inception.txt")
- parser.add_argument("--model", help="path to tensorflow model, download it here:"
- "https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip")
- parser.add_argument("--log", help="path to logging file")
- parser.add_argument("--batch_size", help="size of images in batch", default=1)
- parser.add_argument("--frame_size", help="size of input image", default=224)
- parser.add_argument("--in_blob", help="name for input blob", default='input')
- parser.add_argument("--out_blob", help="name for output blob", default='softmax2')
- args = parser.parse_args()
- data_fetcher = MeanValueFetch(args.frame_size, args.imgs_dir, True)
- frameworks = [TensorflowModel(args.model, args.in_blob, args.out_blob),
- DnnTfInceptionModel(args.model, '', args.out_blob)]
- acc_eval = ClsAccEvaluation(args.log, args.img_cls_file, args.batch_size)
- acc_eval.process(frameworks, data_fetcher)
|