123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- from __future__ import print_function
- from abc import ABCMeta, abstractmethod
- import numpy as np
- import sys
- import os
- import argparse
- import time
- try:
- import caffe
- except ImportError:
- raise ImportError('Can\'t find Caffe Python module. If you\'ve built it from sources without installation, '
- 'configure environment variable PYTHONPATH to "git/caffe/python" directory')
- try:
- import cv2 as cv
- except ImportError:
- raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
- 'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
- try:
- xrange # Python 2
- except NameError:
- xrange = range # Python 3
- class DataFetch(object):
- imgs_dir = ''
- frame_size = 0
- bgr_to_rgb = False
- __metaclass__ = ABCMeta
- @abstractmethod
- def preprocess(self, img):
- pass
- def get_batch(self, imgs_names):
- assert type(imgs_names) is list
- batch = np.zeros((len(imgs_names), 3, self.frame_size, self.frame_size)).astype(np.float32)
- for i in range(len(imgs_names)):
- img_name = imgs_names[i]
- img_file = self.imgs_dir + img_name
- assert os.path.exists(img_file)
- img = cv.imread(img_file, cv.IMREAD_COLOR)
- min_dim = min(img.shape[-3], img.shape[-2])
- resize_ratio = self.frame_size / float(min_dim)
- img = cv.resize(img, (0, 0), fx=resize_ratio, fy=resize_ratio)
- cols = img.shape[1]
- rows = img.shape[0]
- y1 = (rows - self.frame_size) / 2
- y2 = y1 + self.frame_size
- x1 = (cols - self.frame_size) / 2
- x2 = x1 + self.frame_size
- img = img[y1:y2, x1:x2]
- if self.bgr_to_rgb:
- img = img[..., ::-1]
- image_data = img[:, :, 0:3].transpose(2, 0, 1)
- batch[i] = self.preprocess(image_data)
- return batch
- class MeanBlobFetch(DataFetch):
- mean_blob = np.ndarray(())
- def __init__(self, frame_size, mean_blob_path, imgs_dir):
- self.imgs_dir = imgs_dir
- self.frame_size = frame_size
- blob = caffe.proto.caffe_pb2.BlobProto()
- data = open(mean_blob_path, 'rb').read()
- blob.ParseFromString(data)
- self.mean_blob = np.array(caffe.io.blobproto_to_array(blob))
- start = (self.mean_blob.shape[2] - self.frame_size) / 2
- stop = start + self.frame_size
- self.mean_blob = self.mean_blob[:, :, start:stop, start:stop][0]
- def preprocess(self, img):
- return img - self.mean_blob
- class MeanChannelsFetch(MeanBlobFetch):
- def __init__(self, frame_size, imgs_dir):
- self.imgs_dir = imgs_dir
- self.frame_size = frame_size
- self.mean_blob = np.ones((3, self.frame_size, self.frame_size)).astype(np.float32)
- self.mean_blob[0] *= 104
- self.mean_blob[1] *= 117
- self.mean_blob[2] *= 123
- class MeanValueFetch(MeanBlobFetch):
- def __init__(self, frame_size, imgs_dir, bgr_to_rgb):
- self.imgs_dir = imgs_dir
- self.frame_size = frame_size
- self.mean_blob = np.ones((3, self.frame_size, self.frame_size)).astype(np.float32)
- self.mean_blob *= 117
- self.bgr_to_rgb = bgr_to_rgb
- def get_correct_answers(img_list, img_classes, net_output_blob):
- correct_answers = 0
- for i in range(len(img_list)):
- indexes = np.argsort(net_output_blob[i])[-5:]
- correct_index = img_classes[img_list[i]]
- if correct_index in indexes:
- correct_answers += 1
- return correct_answers
- class Framework(object):
- in_blob_name = ''
- out_blob_name = ''
- __metaclass__ = ABCMeta
- @abstractmethod
- def get_name(self):
- pass
- @abstractmethod
- def get_output(self, input_blob):
- pass
- class CaffeModel(Framework):
- net = caffe.Net
- need_reshape = False
- def __init__(self, prototxt, caffemodel, in_blob_name, out_blob_name, need_reshape=False):
- caffe.set_mode_cpu()
- self.net = caffe.Net(prototxt, caffemodel, caffe.TEST)
- self.in_blob_name = in_blob_name
- self.out_blob_name = out_blob_name
- self.need_reshape = need_reshape
- def get_name(self):
- return 'Caffe'
- def get_output(self, input_blob):
- if self.need_reshape:
- self.net.blobs[self.in_blob_name].reshape(*input_blob.shape)
- return self.net.forward_all(**{self.in_blob_name: input_blob})[self.out_blob_name]
- class DnnCaffeModel(Framework):
- net = object
- def __init__(self, prototxt, caffemodel, in_blob_name, out_blob_name):
- self.net = cv.dnn.readNetFromCaffe(prototxt, caffemodel)
- self.in_blob_name = in_blob_name
- self.out_blob_name = out_blob_name
- def get_name(self):
- return 'DNN'
- def get_output(self, input_blob):
- self.net.setInput(input_blob, self.in_blob_name)
- return self.net.forward(self.out_blob_name)
- class ClsAccEvaluation:
- log = sys.stdout
- img_classes = {}
- batch_size = 0
- def __init__(self, log_path, img_classes_file, batch_size):
- self.log = open(log_path, 'w')
- self.img_classes = self.read_classes(img_classes_file)
- self.batch_size = batch_size
- @staticmethod
- def read_classes(img_classes_file):
- result = {}
- with open(img_classes_file) as file:
- for l in file.readlines():
- result[l.split()[0]] = int(l.split()[1])
- return result
- def process(self, frameworks, data_fetcher):
- sorted_imgs_names = sorted(self.img_classes.keys())
- correct_answers = [0] * len(frameworks)
- samples_handled = 0
- blobs_l1_diff = [0] * len(frameworks)
- blobs_l1_diff_count = [0] * len(frameworks)
- blobs_l_inf_diff = [sys.float_info.min] * len(frameworks)
- inference_time = [0.0] * len(frameworks)
- for x in xrange(0, len(sorted_imgs_names), self.batch_size):
- sublist = sorted_imgs_names[x:x + self.batch_size]
- batch = data_fetcher.get_batch(sublist)
- samples_handled += len(sublist)
- frameworks_out = []
- fw_accuracy = []
- for i in range(len(frameworks)):
- start = time.time()
- out = frameworks[i].get_output(batch)
- end = time.time()
- correct_answers[i] += get_correct_answers(sublist, self.img_classes, out)
- fw_accuracy.append(100 * correct_answers[i] / float(samples_handled))
- frameworks_out.append(out)
- inference_time[i] += end - start
- print(samples_handled, 'Accuracy for', frameworks[i].get_name() + ':', fw_accuracy[i], file=self.log)
- print("Inference time, ms ", \
- frameworks[i].get_name(), inference_time[i] / samples_handled * 1000, file=self.log)
- for i in range(1, len(frameworks)):
- log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
- diff = np.abs(frameworks_out[0] - frameworks_out[i])
- l1_diff = np.sum(diff) / diff.size
- print(samples_handled, "L1 difference", log_str, l1_diff, file=self.log)
- blobs_l1_diff[i] += l1_diff
- blobs_l1_diff_count[i] += 1
- if np.max(diff) > blobs_l_inf_diff[i]:
- blobs_l_inf_diff[i] = np.max(diff)
- print(samples_handled, "L_INF difference", log_str, blobs_l_inf_diff[i], file=self.log)
- self.log.flush()
- for i in range(1, len(blobs_l1_diff)):
- log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
- print('Final l1 diff', log_str, blobs_l1_diff[i] / blobs_l1_diff_count[i], file=self.log)
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument("--imgs_dir", help="path to ImageNet validation subset images dir, ILSVRC2012_img_val dir")
- parser.add_argument("--img_cls_file", help="path to file with classes ids for images, val.txt file from this "
- "archive: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz")
- parser.add_argument("--prototxt", help="path to caffe prototxt, download it here: "
- "https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/deploy.prototxt")
- parser.add_argument("--caffemodel", help="path to caffemodel file, download it here: "
- "http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel")
- parser.add_argument("--log", help="path to logging file")
- parser.add_argument("--mean", help="path to ImageNet mean blob caffe file, imagenet_mean.binaryproto file from"
- "this archive: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz")
- parser.add_argument("--batch_size", help="size of images in batch", default=1000)
- parser.add_argument("--frame_size", help="size of input image", default=227)
- parser.add_argument("--in_blob", help="name for input blob", default='data')
- parser.add_argument("--out_blob", help="name for output blob", default='prob')
- args = parser.parse_args()
- data_fetcher = MeanBlobFetch(args.frame_size, args.mean, args.imgs_dir)
- frameworks = [CaffeModel(args.prototxt, args.caffemodel, args.in_blob, args.out_blob),
- DnnCaffeModel(args.prototxt, args.caffemodel, '', args.out_blob)]
- acc_eval = ClsAccEvaluation(args.log, args.img_cls_file, args.batch_size)
- acc_eval.process(frameworks, data_fetcher)
|