123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- #include "perf_precomp.hpp"
- #include <opencv2/dnn/shape_utils.hpp>
- namespace opencv_test {
- struct Conv1DParam_t {
- int kernel;
- struct BlobShape { int dims[3]; } shapeIn;
- int outCN;
- int groups;
- int stride;
- int dilation;
- int pad[2];
- const char* padMode;
- bool hasBias;
- double declared_flops;
- };
- // Details: #12142
- static const Conv1DParam_t testConvolution1DConfigs[] = {
- {3, {{1, 6, 10}}, 6, 1, 1, 1, {0, 0}, "VALID", true, 1776.},
- {3, {{1, 2, 19}}, 2, 2, 2, 1, {1, 1}, "", true, 260.},
- {3, {{1, 2, 25}}, 2, 2, 1, 1, {2, 2}, "SAME", false, 650.},
- };
- struct Conv1DParamID
- {
- enum {
- CONV_0 = 0,
- CONV_LAST = sizeof(testConvolution1DConfigs) / sizeof(testConvolution1DConfigs[0])
- };
- int val_;
- Conv1DParamID(int val = 0) : val_(val) {}
- operator int() const { return val_; }
- static ::testing::internal::ParamGenerator<Conv1DParamID> all()
- {
- enum { NUM = (int)CONV_LAST };
- Conv1DParamID v_[NUM]; for (int i = 0; i < NUM; ++i) { v_[i] = Conv1DParamID(i); } // reduce generated code size
- return ::testing::ValuesIn(v_, v_ + NUM);
- }
- };
- static inline void PrintTo(const Conv1DParamID& v, std::ostream* os)
- {
- CV_Assert((int)v >= 0); CV_Assert((int)v < Conv1DParamID::CONV_LAST);
- const Conv1DParam_t& p = testConvolution1DConfigs[(int)v];
- *os << "GFLOPS=" << cv::format("%.3f", p.declared_flops * 1e-9)
- << ", K=[" << p.kernel << "]"
- << ", IN={" << p.shapeIn.dims[0] << ", " << p.shapeIn.dims[1] << ", " << p.shapeIn.dims[2] << "}"
- << ", OCN=" << p.outCN;
- if (p.groups > 1)
- *os << ", G=" << p.groups;
- if (p.stride != 1)
- *os << ", S=" << p.stride;
- if (p.dilation != 1)
- *os << ", D=" << p.dilation;
- if (p.pad[0] != 0 && p.pad[1] != 0 )
- *os << ", P=(" << p.pad[0] << ", " << p.pad[1] << ")";
- if (!((std::string)p.padMode).empty())
- *os << ", PM=" << ((std::string)p.padMode);
- if (p.hasBias)
- *os << ", BIAS";
- }
- typedef tuple<Conv1DParamID, tuple<Backend, Target> > Conv1DTestParam_t;
- typedef TestBaseWithParam<Conv1DTestParam_t> Conv1D;
- PERF_TEST_P_(Conv1D, conv1d)
- {
- int test_id = (int)get<0>(GetParam());
- ASSERT_GE(test_id, 0); ASSERT_LT(test_id, Conv1DParamID::CONV_LAST);
- const Conv1DParam_t& params = testConvolution1DConfigs[test_id];
- double declared_flops = params.declared_flops;
- DictValue kernel = DictValue::arrayInt(¶ms.kernel, 1);
- DictValue stride = DictValue::arrayInt(¶ms.stride, 1);
- DictValue pad = DictValue::arrayInt(¶ms.pad[0], 2);
- DictValue dilation = DictValue::arrayInt(¶ms.dilation, 1);
- MatShape inputShape = MatShape(params.shapeIn.dims, params.shapeIn.dims + 3);
- int outChannels = params.outCN;
- int groups = params.groups;
- std::string padMode(params.padMode);
- bool hasBias = params.hasBias;
- Backend backendId = get<0>(get<1>(GetParam()));
- Target targetId = get<1>(get<1>(GetParam()));
- if (targetId != DNN_TARGET_CPU)
- throw SkipTestException("Only CPU is supported");
- int inChannels = inputShape[1];
- int sz[] = {outChannels, inChannels / groups, params.kernel};
- Mat weights(3, &sz[0], CV_32F);
- randu(weights, -1.0f, 1.0f);
- LayerParams lp;
- lp.set("kernel_size", kernel);
- lp.set("pad", pad);
- if (!padMode.empty())
- lp.set("pad_mode", padMode);
- lp.set("stride", stride);
- lp.set("dilation", dilation);
- lp.set("num_output", outChannels);
- lp.set("group", groups);
- lp.set("bias_term", hasBias);
- lp.type = "Convolution";
- lp.name = "testLayer";
- lp.blobs.push_back(weights);
- if (hasBias)
- {
- Mat bias(1, outChannels, CV_32F);
- randu(bias, -1.0f, 1.0f);
- lp.blobs.push_back(bias);
- }
- int inpSz[] = {1, inChannels, inputShape[2]};
- Mat input(3, &inpSz[0], CV_32F);
- randu(input, -1.0f, 1.0f);
- Net net;
- net.addLayerToPrev(lp.name, lp.type, lp);
- net.setInput(input);
- net.setPreferableBackend(backendId);
- net.setPreferableTarget(targetId);
- // warmup
- Mat output = net.forward();
- MatShape netInputShape = shape(input);
- size_t weightsMemory = 0, blobsMemory = 0;
- net.getMemoryConsumption(netInputShape, weightsMemory, blobsMemory);
- int64 flops = net.getFLOPS(netInputShape);
- CV_Assert(flops > 0);
- std::cout
- << "IN=" << divUp(input.total() * input.elemSize(), 1u<<10) << " Kb " << netInputShape
- << " OUT=" << divUp(output.total() * output.elemSize(), 1u<<10) << " Kb " << shape(output)
- << " Weights(parameters): " << divUp(weightsMemory, 1u<<10) << " Kb"
- << " MFLOPS=" << flops * 1e-6 << std::endl;
- TEST_CYCLE()
- {
- Mat res = net.forward();
- }
- EXPECT_NEAR(flops, declared_flops, declared_flops * 1e-6);
- SANITY_CHECK_NOTHING();
- }
- INSTANTIATE_TEST_CASE_P(/**/, Conv1D, Combine(
- Conv1DParamID::all(),
- dnnBackendsAndTargets(false, false) // defined in ../test/test_common.hpp
- ));
- } // namespace
|