123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 |
- package org.opencv.test.dnn;
- import java.io.File;
- import java.io.FileInputStream;
- import java.io.IOException;
- import java.util.ArrayList;
- import java.util.List;
- import org.opencv.core.Core;
- import org.opencv.core.Mat;
- import org.opencv.core.MatOfFloat;
- import org.opencv.core.MatOfByte;
- import org.opencv.core.Scalar;
- import org.opencv.core.Size;
- import org.opencv.dnn.DictValue;
- import org.opencv.dnn.Dnn;
- import org.opencv.dnn.Layer;
- import org.opencv.dnn.Net;
- import org.opencv.imgcodecs.Imgcodecs;
- import org.opencv.imgproc.Imgproc;
- import org.opencv.test.OpenCVTestCase;
- public class DnnTensorFlowTest extends OpenCVTestCase {
- private final static String ENV_OPENCV_DNN_TEST_DATA_PATH = "OPENCV_DNN_TEST_DATA_PATH";
- private final static String ENV_OPENCV_TEST_DATA_PATH = "OPENCV_TEST_DATA_PATH";
- String modelFileName = "";
- String sourceImageFile = "";
- Net net;
- private static void normAssert(Mat ref, Mat test) {
- final double l1 = 1e-5;
- final double lInf = 1e-4;
- double normL1 = Core.norm(ref, test, Core.NORM_L1) / ref.total();
- double normLInf = Core.norm(ref, test, Core.NORM_INF) / ref.total();
- assertTrue(normL1 < l1);
- assertTrue(normLInf < lInf);
- }
- @Override
- protected void setUp() throws Exception {
- super.setUp();
- String envDnnTestDataPath = System.getenv(ENV_OPENCV_DNN_TEST_DATA_PATH);
- if(envDnnTestDataPath == null){
- isTestCaseEnabled = false;
- return;
- }
- File dnnTestDataPath = new File(envDnnTestDataPath);
- modelFileName = new File(dnnTestDataPath, "dnn/tensorflow_inception_graph.pb").toString();
- String envTestDataPath = System.getenv(ENV_OPENCV_TEST_DATA_PATH);
- if(envTestDataPath == null) throw new Exception(ENV_OPENCV_TEST_DATA_PATH + " has to be defined!");
- File testDataPath = new File(envTestDataPath);
- File f = new File(testDataPath, "dnn/grace_hopper_227.png");
- sourceImageFile = f.toString();
- if(!f.exists()) throw new Exception("Test image is missing: " + sourceImageFile);
- net = Dnn.readNetFromTensorflow(modelFileName);
- }
- public void testGetLayerTypes() {
- List<String> layertypes = new ArrayList();
- net.getLayerTypes(layertypes);
- assertFalse("No layer types returned!", layertypes.isEmpty());
- }
- public void testGetLayer() {
- List<String> layernames = net.getLayerNames();
- assertFalse("Test net returned no layers!", layernames.isEmpty());
- String testLayerName = layernames.get(0);
- DictValue layerId = new DictValue(testLayerName);
- assertEquals("DictValue did not return the string, which was used in constructor!", testLayerName, layerId.getStringValue());
- Layer layer = net.getLayer(layerId);
- assertEquals("Layer name does not match the expected value!", testLayerName, layer.get_name());
- }
- public void checkInceptionNet(Net net)
- {
- Mat image = Imgcodecs.imread(sourceImageFile);
- assertNotNull("Loading image from file failed!", image);
- Mat inputBlob = Dnn.blobFromImage(image, 1.0, new Size(224, 224), new Scalar(0), true, true);
- assertNotNull("Converting image to blob failed!", inputBlob);
- net.setInput(inputBlob, "input");
- Mat result = new Mat();
- try {
- net.setPreferableBackend(Dnn.DNN_BACKEND_OPENCV);
- result = net.forward("softmax2");
- }
- catch (Exception e) {
- fail("DNN forward failed: " + e.getMessage());
- }
- assertNotNull("Net returned no result!", result);
- result = result.reshape(1, 1);
- Core.MinMaxLocResult minmax = Core.minMaxLoc(result);
- assertEquals("Wrong prediction", (int)minmax.maxLoc.x, 866);
- Mat top5RefScores = new MatOfFloat(new float[] {
- 0.63032645f, 0.2561979f, 0.032181446f, 0.015721032f, 0.014785315f
- }).reshape(1, 1);
- Core.sort(result, result, Core.SORT_DESCENDING);
- normAssert(result.colRange(0, 5), top5RefScores);
- }
- public void testTestNetForward() {
- checkInceptionNet(net);
- }
- public void testReadFromBuffer() {
- File modelFile = new File(modelFileName);
- byte[] modelBuffer = new byte[ (int)modelFile.length() ];
- try {
- FileInputStream fis = new FileInputStream(modelFile);
- fis.read(modelBuffer);
- fis.close();
- } catch (IOException e) {
- fail("Failed to read a model: " + e.getMessage());
- }
- net = Dnn.readNetFromTensorflow(new MatOfByte(modelBuffer));
- checkInceptionNet(net);
- }
- public void testGetAvailableTargets() {
- List<Integer> targets = Dnn.getAvailableTargets(Dnn.DNN_BACKEND_OPENCV);
- assertTrue(targets.contains(Dnn.DNN_TARGET_CPU));
- }
- }
|