123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- package org.opencv.test.dnn;
- import java.io.File;
- import java.io.FileInputStream;
- import java.io.IOException;
- import java.util.ArrayList;
- import java.util.List;
- import org.opencv.core.Core;
- import org.opencv.core.Mat;
- import org.opencv.core.MatOfInt;
- import org.opencv.core.MatOfFloat;
- import org.opencv.core.MatOfByte;
- import org.opencv.core.Scalar;
- import org.opencv.core.Size;
- import org.opencv.dnn.DictValue;
- import org.opencv.dnn.Dnn;
- import org.opencv.dnn.Layer;
- import org.opencv.dnn.Net;
- import org.opencv.imgcodecs.Imgcodecs;
- import org.opencv.imgproc.Imgproc;
- import org.opencv.test.OpenCVTestCase;
- /*
- * regression test for #12324,
- * testing various java.util.List invocations,
- * which use the LIST_GET macro
- */
- public class DnnListRegressionTest extends OpenCVTestCase {
- private final static String ENV_OPENCV_DNN_TEST_DATA_PATH = "OPENCV_DNN_TEST_DATA_PATH";
- private final static String ENV_OPENCV_TEST_DATA_PATH = "OPENCV_TEST_DATA_PATH";
- String modelFileName = "";
- String sourceImageFile = "";
- Net net;
- @Override
- protected void setUp() throws Exception {
- super.setUp();
- String envDnnTestDataPath = System.getenv(ENV_OPENCV_DNN_TEST_DATA_PATH);
- if(envDnnTestDataPath == null){
- isTestCaseEnabled = false;
- return;
- }
- File dnnTestDataPath = new File(envDnnTestDataPath);
- modelFileName = new File(dnnTestDataPath, "dnn/tensorflow_inception_graph.pb").toString();
- String envTestDataPath = System.getenv(ENV_OPENCV_TEST_DATA_PATH);
- if(envTestDataPath == null) throw new Exception(ENV_OPENCV_TEST_DATA_PATH + " has to be defined!");
- File testDataPath = new File(envTestDataPath);
- File f = new File(testDataPath, "dnn/grace_hopper_227.png");
- sourceImageFile = f.toString();
- if(!f.exists()) throw new Exception("Test image is missing: " + sourceImageFile);
- net = Dnn.readNetFromTensorflow(modelFileName);
- Mat image = Imgcodecs.imread(sourceImageFile);
- assertNotNull("Loading image from file failed!", image);
- Mat inputBlob = Dnn.blobFromImage(image, 1.0, new Size(224, 224), new Scalar(0), true, true);
- assertNotNull("Converting image to blob failed!", inputBlob);
- net.setInput(inputBlob, "input");
- }
- public void testSetInputsNames() {
- List<String> inputs = new ArrayList();
- inputs.add("input");
- try {
- net.setInputsNames(inputs);
- } catch(Exception e) {
- fail("Net setInputsNames failed: " + e.getMessage());
- }
- }
- public void testForward() {
- List<Mat> outs = new ArrayList();
- List<String> outNames = new ArrayList();
- outNames.add("softmax2");
- try {
- net.forward(outs,outNames);
- } catch(Exception e) {
- fail("Net forward failed: " + e.getMessage());
- }
- }
- public void testGetMemoryConsumption() {
- int layerId = 1;
- List<MatOfInt> netInputShapes = new ArrayList();
- netInputShapes.add(new MatOfInt(1, 3, 224, 224));
- long[] weights=null;
- long[] blobs=null;
- try {
- net.getMemoryConsumption(layerId, netInputShapes, weights, blobs);
- } catch(Exception e) {
- fail("Net getMemoryConsumption failed: " + e.getMessage());
- }
- }
- public void testGetFLOPS() {
- int layerId = 1;
- List<MatOfInt> netInputShapes = new ArrayList();
- netInputShapes.add(new MatOfInt(1, 3, 224, 224));
- try {
- net.getFLOPS(layerId, netInputShapes);
- } catch(Exception e) {
- fail("Net getFLOPS failed: " + e.getMessage());
- }
- }
- }
|