123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- class Core_RandTest : public cvtest::BaseTest
- {
- public:
- Core_RandTest();
- protected:
- void run(int);
- bool check_pdf(const Mat& hist, double scale, int dist_type,
- double& refval, double& realval);
- };
- Core_RandTest::Core_RandTest()
- {
- }
- static double chi2_p95(int n)
- {
- static float chi2_tab95[] = {
- 3.841f, 5.991f, 7.815f, 9.488f, 11.07f, 12.59f, 14.07f, 15.51f,
- 16.92f, 18.31f, 19.68f, 21.03f, 21.03f, 22.36f, 23.69f, 25.00f,
- 26.30f, 27.59f, 28.87f, 30.14f, 31.41f, 32.67f, 33.92f, 35.17f,
- 36.42f, 37.65f, 38.89f, 40.11f, 41.34f, 42.56f, 43.77f };
- static const double xp = 1.64;
- CV_Assert(n >= 1);
- if( n <= 30 )
- return chi2_tab95[n-1];
- return n + sqrt((double)2*n)*xp + 0.6666666666666*(xp*xp - 1);
- }
- bool Core_RandTest::check_pdf(const Mat& hist, double scale,
- int dist_type, double& refval, double& realval)
- {
- Mat hist0(hist.size(), CV_32F);
- const int* H = hist.ptr<int>();
- float* H0 = hist0.ptr<float>();
- int i, hsz = hist.cols;
- double sum = 0;
- for( i = 0; i < hsz; i++ )
- sum += H[i];
- CV_Assert( fabs(1./sum - scale) < FLT_EPSILON );
- if( dist_type == CV_RAND_UNI )
- {
- float scale0 = (float)(1./hsz);
- for( i = 0; i < hsz; i++ )
- H0[i] = scale0;
- }
- else
- {
- double sum2 = 0, r = (hsz-1.)/2;
- double alpha = 2*sqrt(2.)/r, beta = -alpha*r;
- for( i = 0; i < hsz; i++ )
- {
- double x = i*alpha + beta;
- H0[i] = (float)exp(-x*x);
- sum2 += H0[i];
- }
- sum2 = 1./sum2;
- for( i = 0; i < hsz; i++ )
- H0[i] = (float)(H0[i]*sum2);
- }
- double chi2 = 0;
- for( i = 0; i < hsz; i++ )
- {
- double a = H0[i];
- double b = H[i]*scale;
- if( a > DBL_EPSILON )
- chi2 += (a - b)*(a - b)/(a + b);
- }
- realval = chi2;
- double chi2_pval = chi2_p95(hsz - 1 - (dist_type == CV_RAND_NORMAL ? 2 : 0));
- refval = chi2_pval*0.01;
- return realval <= refval;
- }
- void Core_RandTest::run( int )
- {
- static int _ranges[][2] =
- {{ 0, 256 }, { -128, 128 }, { 0, 65536 }, { -32768, 32768 },
- { -1000000, 1000000 }, { -1000, 1000 }, { -1000, 1000 }};
- const int MAX_SDIM = 10;
- const int N = 2000000;
- const int maxSlice = 1000;
- const int MAX_HIST_SIZE = 1000;
- int progress = 0;
- RNG& rng = ts->get_rng();
- RNG tested_rng = theRNG();
- test_case_count = 200;
- for( int idx = 0; idx < test_case_count; idx++ )
- {
- progress = update_progress( progress, idx, test_case_count, 0 );
- ts->update_context( this, idx, false );
- int depth = cvtest::randInt(rng) % (CV_64F+1);
- int c, cn = (cvtest::randInt(rng) % 4) + 1;
- int type = CV_MAKETYPE(depth, cn);
- int dist_type = cvtest::randInt(rng) % (CV_RAND_NORMAL+1);
- int i, k, SZ = N/cn;
- Scalar A, B;
- double eps = 1.e-4;
- if (depth == CV_64F)
- eps = 1.e-7;
- bool do_sphere_test = dist_type == CV_RAND_UNI;
- Mat arr[2], hist[4];
- int W[] = {0,0,0,0};
- arr[0].create(1, SZ, type);
- arr[1].create(1, SZ, type);
- bool fast_algo = dist_type == CV_RAND_UNI && depth < CV_32F;
- for( c = 0; c < cn; c++ )
- {
- int a, b, hsz;
- if( dist_type == CV_RAND_UNI )
- {
- a = (int)(cvtest::randInt(rng) % (_ranges[depth][1] -
- _ranges[depth][0])) + _ranges[depth][0];
- do
- {
- b = (int)(cvtest::randInt(rng) % (_ranges[depth][1] -
- _ranges[depth][0])) + _ranges[depth][0];
- }
- while( abs(a-b) <= 1 );
- if( a > b )
- std::swap(a, b);
- unsigned r = (unsigned)(b - a);
- fast_algo = fast_algo && r <= 256 && (r & (r-1)) == 0;
- hsz = min((unsigned)(b - a), (unsigned)MAX_HIST_SIZE);
- do_sphere_test = do_sphere_test && b - a >= 100;
- }
- else
- {
- int vrange = _ranges[depth][1] - _ranges[depth][0];
- int meanrange = vrange/16;
- int mindiv = MAX(vrange/20, 5);
- int maxdiv = MIN(vrange/8, 10000);
- a = cvtest::randInt(rng) % meanrange - meanrange/2 +
- (_ranges[depth][0] + _ranges[depth][1])/2;
- b = cvtest::randInt(rng) % (maxdiv - mindiv) + mindiv;
- hsz = min((unsigned)b*9, (unsigned)MAX_HIST_SIZE);
- }
- A[c] = a;
- B[c] = b;
- hist[c].create(1, hsz, CV_32S);
- }
- cv::RNG saved_rng = tested_rng;
- int maxk = fast_algo ? 0 : 1;
- for( k = 0; k <= maxk; k++ )
- {
- tested_rng = saved_rng;
- int sz = 0, dsz = 0, slice;
- for( slice = 0; slice < maxSlice && sz < SZ; slice++, sz += dsz )
- {
- dsz = slice+1 < maxSlice ? (int)(cvtest::randInt(rng) % (SZ - sz) + 1) : SZ - sz;
- Mat aslice = arr[k].colRange(sz, sz + dsz);
- tested_rng.fill(aslice, dist_type, A, B);
- }
- }
- if( maxk >= 1 && cvtest::norm(arr[0], arr[1], NORM_INF) > eps)
- {
- ts->printf( cvtest::TS::LOG, "RNG output depends on the array lengths (some generated numbers get lost?)" );
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- return;
- }
- for( c = 0; c < cn; c++ )
- {
- const uchar* data = arr[0].ptr();
- int* H = hist[c].ptr<int>();
- int HSZ = hist[c].cols;
- double minVal = dist_type == CV_RAND_UNI ? A[c] : A[c] - B[c]*4;
- double maxVal = dist_type == CV_RAND_UNI ? B[c] : A[c] + B[c]*4;
- double scale = HSZ/(maxVal - minVal);
- double delta = -minVal*scale;
- hist[c] = Scalar::all(0);
- for( i = c; i < SZ*cn; i += cn )
- {
- double val = depth == CV_8U ? ((const uchar*)data)[i] :
- depth == CV_8S ? ((const schar*)data)[i] :
- depth == CV_16U ? ((const ushort*)data)[i] :
- depth == CV_16S ? ((const short*)data)[i] :
- depth == CV_32S ? ((const int*)data)[i] :
- depth == CV_32F ? ((const float*)data)[i] :
- ((const double*)data)[i];
- int ival = cvFloor(val*scale + delta);
- if( (unsigned)ival < (unsigned)HSZ )
- {
- H[ival]++;
- W[c]++;
- }
- else if( dist_type == CV_RAND_UNI )
- {
- if( (minVal <= val && val < maxVal) || (depth >= CV_32F && val == maxVal) )
- {
- H[ival < 0 ? 0 : HSZ-1]++;
- W[c]++;
- }
- else
- {
- putchar('^');
- }
- }
- }
- if( dist_type == CV_RAND_UNI && W[c] != SZ )
- {
- ts->printf( cvtest::TS::LOG, "Uniform RNG gave values out of the range [%g,%g) on channel %d/%d\n",
- A[c], B[c], c, cn);
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- return;
- }
- if( dist_type == CV_RAND_NORMAL && W[c] < SZ*.90)
- {
- ts->printf( cvtest::TS::LOG, "Normal RNG gave too many values out of the range (%g+4*%g,%g+4*%g) on channel %d/%d\n",
- A[c], B[c], A[c], B[c], c, cn);
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- return;
- }
- double refval = 0, realval = 0;
- if( !check_pdf(hist[c], 1./W[c], dist_type, refval, realval) )
- {
- ts->printf( cvtest::TS::LOG, "RNG failed Chi-square test "
- "(got %g vs probable maximum %g) on channel %d/%d\n",
- realval, refval, c, cn);
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- return;
- }
- }
- // Monte-Carlo test. Compute volume of SDIM-dimensional sphere
- // inscribed in [-1,1]^SDIM cube.
- if( do_sphere_test )
- {
- int SDIM = cvtest::randInt(rng) % (MAX_SDIM-1) + 2;
- int N0 = (SZ*cn/SDIM), n = 0;
- double r2 = 0;
- const uchar* data = arr[0].ptr();
- double scale[4], delta[4];
- for( c = 0; c < cn; c++ )
- {
- scale[c] = 2./(B[c] - A[c]);
- delta[c] = -A[c]*scale[c] - 1;
- }
- for( i = k = c = 0; i <= SZ*cn - SDIM; i++, k++, c++ )
- {
- double val = depth == CV_8U ? ((const uchar*)data)[i] :
- depth == CV_8S ? ((const schar*)data)[i] :
- depth == CV_16U ? ((const ushort*)data)[i] :
- depth == CV_16S ? ((const short*)data)[i] :
- depth == CV_32S ? ((const int*)data)[i] :
- depth == CV_32F ? ((const float*)data)[i] : ((const double*)data)[i];
- c &= c < cn ? -1 : 0;
- val = val*scale[c] + delta[c];
- r2 += val*val;
- if( k == SDIM-1 )
- {
- n += r2 <= 1;
- r2 = 0;
- k = -1;
- }
- }
- double V = ((double)n/N0)*(1 << SDIM);
- // the theoretically computed volume
- int sdim = SDIM % 2;
- double V0 = sdim + 1;
- for( sdim += 2; sdim <= SDIM; sdim += 2 )
- V0 *= 2*CV_PI/sdim;
- if( fabs(V - V0) > 0.3*fabs(V0) )
- {
- ts->printf( cvtest::TS::LOG, "RNG failed %d-dim sphere volume test (got %g instead of %g)\n",
- SDIM, V, V0);
- ts->printf( cvtest::TS::LOG, "depth = %d, N0 = %d\n", depth, N0);
- ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
- return;
- }
- }
- }
- }
- TEST(Core_Rand, quality) { Core_RandTest test; test.safe_run(); }
- class Core_RandRangeTest : public cvtest::BaseTest
- {
- public:
- Core_RandRangeTest() {}
- ~Core_RandRangeTest() {}
- protected:
- void run(int)
- {
- Mat a(Size(1280, 720), CV_8U, Scalar(20));
- Mat af(Size(1280, 720), CV_32F, Scalar(20));
- theRNG().fill(a, RNG::UNIFORM, -DBL_MAX, DBL_MAX);
- theRNG().fill(af, RNG::UNIFORM, -DBL_MAX, DBL_MAX);
- int n0 = 0, n255 = 0, nx = 0;
- int nfmin = 0, nfmax = 0, nfx = 0;
- for( int i = 0; i < a.rows; i++ )
- for( int j = 0; j < a.cols; j++ )
- {
- int v = a.at<uchar>(i,j);
- double vf = af.at<float>(i,j);
- if( v == 0 ) n0++;
- else if( v == 255 ) n255++;
- else nx++;
- if( vf < FLT_MAX*-0.999f ) nfmin++;
- else if( vf > FLT_MAX*0.999f ) nfmax++;
- else nfx++;
- }
- CV_Assert( n0 > nx*2 && n255 > nx*2 );
- CV_Assert( nfmin > nfx*2 && nfmax > nfx*2 );
- }
- };
- TEST(Core_Rand, range) { Core_RandRangeTest test; test.safe_run(); }
- TEST(Core_RNG_MT19937, regression)
- {
- cv::RNG_MT19937 rng;
- int actual[61] = {0, };
- const size_t length = (sizeof(actual) / sizeof(actual[0]));
- for (int i = 0; i < 10000; ++i )
- {
- actual[(unsigned)(rng.next() ^ i) % length]++;
- }
- int expected[length] = {
- 177, 158, 180, 177, 160, 179, 143, 162,
- 177, 144, 170, 174, 165, 168, 168, 156,
- 177, 157, 159, 169, 177, 182, 166, 154,
- 144, 180, 168, 152, 170, 187, 160, 145,
- 139, 164, 157, 179, 148, 183, 159, 160,
- 196, 184, 149, 142, 162, 148, 163, 152,
- 168, 173, 160, 181, 172, 181, 155, 153,
- 158, 171, 138, 150, 150 };
- for (size_t i = 0; i < length; ++i)
- {
- ASSERT_EQ(expected[i], actual[i]);
- }
- }
- TEST(Core_Rand, Regression_Stack_Corruption)
- {
- int bufsz = 128; //enough for 14 doubles
- AutoBuffer<uchar> buffer(bufsz);
- size_t offset = 0;
- cv::Mat_<cv::Point2d> x(2, 3, (cv::Point2d*)(buffer.data()+offset));
- offset += x.total()*x.elemSize();
- double& param1 = *(double*)(buffer.data()+offset);
- offset += sizeof(double);
- double& param2 = *(double*)(buffer.data()+offset);
- param1 = -9; param2 = 2;
- cv::theRNG().fill(x, cv::RNG::NORMAL, param1, param2);
- ASSERT_EQ(param1, -9);
- ASSERT_EQ(param2, 2);
- }
- class RandRowFillParallelLoopBody : public cv::ParallelLoopBody
- {
- public:
- RandRowFillParallelLoopBody(Mat& dst) : dst_(dst) {}
- ~RandRowFillParallelLoopBody() {}
- void operator()(const cv::Range& r) const
- {
- cv::RNG rng = cv::theRNG(); // copy state
- for (int y = r.start; y < r.end; y++)
- {
- cv::theRNG() = cv::RNG(rng.state + y); // seed is based on processed row
- cv::randu(dst_.row(y), Scalar(-100), Scalar(100));
- }
- // theRNG() state is changed here (but state collision has low probability, so we don't check this)
- }
- protected:
- Mat& dst_;
- };
- TEST(Core_Rand, parallel_for_stable_results)
- {
- cv::RNG rng = cv::theRNG(); // save rng state
- Mat dst1(1000, 100, CV_8SC1);
- parallel_for_(cv::Range(0, dst1.rows), RandRowFillParallelLoopBody(dst1));
- cv::theRNG() = rng; // restore rng state
- Mat dst2(1000, 100, CV_8SC1);
- parallel_for_(cv::Range(0, dst2.rows), RandRowFillParallelLoopBody(dst2));
- ASSERT_EQ(0, countNonZero(dst1 != dst2));
- }
- }} // namespace
|