1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- #include "test_precomp.hpp"
- #ifdef HAVE_EIGEN
- #include <Eigen/Core>
- #include <Eigen/Dense>
- #include "opencv2/core/eigen.hpp"
- #endif
- #include "opencv2/core/cuda.hpp"
- namespace opencv_test { namespace {
- class Core_ReduceTest : public cvtest::BaseTest
- {
- public:
- Core_ReduceTest() {}
- protected:
- void run( int);
- int checkOp( const Mat& src, int dstType, int opType, const Mat& opRes, int dim );
- int checkCase( int srcType, int dstType, int dim, Size sz );
- int checkDim( int dim, Size sz );
- int checkSize( Size sz );
- };
- template<class Type>
- void testReduce( const Mat& src, Mat& sum, Mat& avg, Mat& max, Mat& min, int dim )
- {
- CV_Assert( src.channels() == 1 );
- if( dim == 0 ) // row
- {
- sum.create( 1, src.cols, CV_64FC1 );
- max.create( 1, src.cols, CV_64FC1 );
- min.create( 1, src.cols, CV_64FC1 );
- }
- else
- {
- sum.create( src.rows, 1, CV_64FC1 );
- max.create( src.rows, 1, CV_64FC1 );
- min.create( src.rows, 1, CV_64FC1 );
- }
- sum.setTo(Scalar(0));
- max.setTo(Scalar(-DBL_MAX));
- min.setTo(Scalar(DBL_MAX));
- const Mat_<Type>& src_ = src;
- Mat_<double>& sum_ = (Mat_<double>&)sum;
- Mat_<double>& min_ = (Mat_<double>&)min;
- Mat_<double>& max_ = (Mat_<double>&)max;
- if( dim == 0 )
- {
- for( int ri = 0; ri < src.rows; ri++ )
- {
- for( int ci = 0; ci < src.cols; ci++ )
- {
- sum_(0, ci) += src_(ri, ci);
- max_(0, ci) = std::max( max_(0, ci), (double)src_(ri, ci) );
- min_(0, ci) = std::min( min_(0, ci), (double)src_(ri, ci) );
- }
- }
- }
- else
- {
- for( int ci = 0; ci < src.cols; ci++ )
- {
- for( int ri = 0; ri < src.rows; ri++ )
- {
- sum_(ri, 0) += src_(ri, ci);
- max_(ri, 0) = std::max( max_(ri, 0), (double)src_(ri, ci) );
- min_(ri, 0) = std::min( min_(ri, 0), (double)src_(ri, ci) );
- }
- }
- }
- sum.convertTo( avg, CV_64FC1 );
- avg = avg * (1.0 / (dim==0 ? (double)src.rows : (double)src.cols));
- }
- void getMatTypeStr( int type, string& str)
- {
- str = type == CV_8UC1 ? "CV_8UC1" :
- type == CV_8SC1 ? "CV_8SC1" :
- type == CV_16UC1 ? "CV_16UC1" :
- type == CV_16SC1 ? "CV_16SC1" :
- type == CV_32SC1 ? "CV_32SC1" :
- type == CV_32FC1 ? "CV_32FC1" :
- type == CV_64FC1 ? "CV_64FC1" : "unsupported matrix type";
- }
- int Core_ReduceTest::checkOp( const Mat& src, int dstType, int opType, const Mat& opRes, int dim )
- {
- int srcType = src.type();
- bool support = false;
- if( opType == REDUCE_SUM || opType == REDUCE_AVG )
- {
- if( srcType == CV_8U && (dstType == CV_32S || dstType == CV_32F || dstType == CV_64F) )
- support = true;
- if( srcType == CV_16U && (dstType == CV_32F || dstType == CV_64F) )
- support = true;
- if( srcType == CV_16S && (dstType == CV_32F || dstType == CV_64F) )
- support = true;
- if( srcType == CV_32F && (dstType == CV_32F || dstType == CV_64F) )
- support = true;
- if( srcType == CV_64F && dstType == CV_64F)
- support = true;
- }
- else if( opType == REDUCE_MAX )
- {
- if( srcType == CV_8U && dstType == CV_8U )
- support = true;
- if( srcType == CV_32F && dstType == CV_32F )
- support = true;
- if( srcType == CV_64F && dstType == CV_64F )
- support = true;
- }
- else if( opType == REDUCE_MIN )
- {
- if( srcType == CV_8U && dstType == CV_8U)
- support = true;
- if( srcType == CV_32F && dstType == CV_32F)
- support = true;
- if( srcType == CV_64F && dstType == CV_64F)
- support = true;
- }
- if( !support )
- return cvtest::TS::OK;
- double eps = 0.0;
- if ( opType == REDUCE_SUM || opType == REDUCE_AVG )
- {
- if ( dstType == CV_32F )
- eps = 1.e-5;
- else if( dstType == CV_64F )
- eps = 1.e-8;
- else if ( dstType == CV_32S )
- eps = 0.6;
- }
- CV_Assert( opRes.type() == CV_64FC1 );
- Mat _dst, dst, diff;
- cv::reduce( src, _dst, dim, opType, dstType );
- _dst.convertTo( dst, CV_64FC1 );
- absdiff( opRes,dst,diff );
- bool check = false;
- if (dstType == CV_32F || dstType == CV_64F)
- check = countNonZero(diff>eps*dst) > 0;
- else
- check = countNonZero(diff>eps) > 0;
- if( check )
- {
- char msg[100];
- const char* opTypeStr = opType == REDUCE_SUM ? "REDUCE_SUM" :
- opType == REDUCE_AVG ? "REDUCE_AVG" :
- opType == REDUCE_MAX ? "REDUCE_MAX" :
- opType == REDUCE_MIN ? "REDUCE_MIN" : "unknown operation type";
- string srcTypeStr, dstTypeStr;
- getMatTypeStr( src.type(), srcTypeStr );
- getMatTypeStr( dstType, dstTypeStr );
- const char* dimStr = dim == 0 ? "ROWS" : "COLS";
- sprintf( msg, "bad accuracy with srcType = %s, dstType = %s, opType = %s, dim = %s",
- srcTypeStr.c_str(), dstTypeStr.c_str(), opTypeStr, dimStr );
- ts->printf( cvtest::TS::LOG, msg );
- return cvtest::TS::FAIL_BAD_ACCURACY;
- }
- return cvtest::TS::OK;
- }
- int Core_ReduceTest::checkCase( int srcType, int dstType, int dim, Size sz )
- {
- int code = cvtest::TS::OK, tempCode;
- Mat src, sum, avg, max, min;
- src.create( sz, srcType );
- randu( src, Scalar(0), Scalar(100) );
- if( srcType == CV_8UC1 )
- testReduce<uchar>( src, sum, avg, max, min, dim );
- else if( srcType == CV_8SC1 )
- testReduce<char>( src, sum, avg, max, min, dim );
- else if( srcType == CV_16UC1 )
- testReduce<unsigned short int>( src, sum, avg, max, min, dim );
- else if( srcType == CV_16SC1 )
- testReduce<short int>( src, sum, avg, max, min, dim );
- else if( srcType == CV_32SC1 )
- testReduce<int>( src, sum, avg, max, min, dim );
- else if( srcType == CV_32FC1 )
- testReduce<float>( src, sum, avg, max, min, dim );
- else if( srcType == CV_64FC1 )
- testReduce<double>( src, sum, avg, max, min, dim );
- else
- CV_Assert( 0 );
- // 1. sum
- tempCode = checkOp( src, dstType, REDUCE_SUM, sum, dim );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- // 2. avg
- tempCode = checkOp( src, dstType, REDUCE_AVG, avg, dim );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- // 3. max
- tempCode = checkOp( src, dstType, REDUCE_MAX, max, dim );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- // 4. min
- tempCode = checkOp( src, dstType, REDUCE_MIN, min, dim );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- return code;
- }
- int Core_ReduceTest::checkDim( int dim, Size sz )
- {
- int code = cvtest::TS::OK, tempCode;
- // CV_8UC1
- tempCode = checkCase( CV_8UC1, CV_8UC1, dim, sz );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- tempCode = checkCase( CV_8UC1, CV_32SC1, dim, sz );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- tempCode = checkCase( CV_8UC1, CV_32FC1, dim, sz );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- tempCode = checkCase( CV_8UC1, CV_64FC1, dim, sz );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- // CV_16UC1
- tempCode = checkCase( CV_16UC1, CV_32FC1, dim, sz );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- tempCode = checkCase( CV_16UC1, CV_64FC1, dim, sz );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- // CV_16SC1
- tempCode = checkCase( CV_16SC1, CV_32FC1, dim, sz );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- tempCode = checkCase( CV_16SC1, CV_64FC1, dim, sz );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- // CV_32FC1
- tempCode = checkCase( CV_32FC1, CV_32FC1, dim, sz );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- tempCode = checkCase( CV_32FC1, CV_64FC1, dim, sz );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- // CV_64FC1
- tempCode = checkCase( CV_64FC1, CV_64FC1, dim, sz );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- return code;
- }
- int Core_ReduceTest::checkSize( Size sz )
- {
- int code = cvtest::TS::OK, tempCode;
- tempCode = checkDim( 0, sz ); // rows
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- tempCode = checkDim( 1, sz ); // cols
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- return code;
- }
- void Core_ReduceTest::run( int )
- {
- int code = cvtest::TS::OK, tempCode;
- tempCode = checkSize( Size(1,1) );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- tempCode = checkSize( Size(1,100) );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- tempCode = checkSize( Size(100,1) );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- tempCode = checkSize( Size(1000,500) );
- code = tempCode != cvtest::TS::OK ? tempCode : code;
- ts->set_failed_test_info( code );
- }
- #define CHECK_C
- TEST(Core_PCA, accuracy)
- {
- const Size sz(200, 500);
- double diffPrjEps, diffBackPrjEps,
- prjEps, backPrjEps,
- evalEps, evecEps;
- int maxComponents = 100;
- double retainedVariance = 0.95;
- Mat rPoints(sz, CV_32FC1), rTestPoints(sz, CV_32FC1);
- RNG rng(12345);
- rng.fill( rPoints, RNG::UNIFORM, Scalar::all(0.0), Scalar::all(1.0) );
- rng.fill( rTestPoints, RNG::UNIFORM, Scalar::all(0.0), Scalar::all(1.0) );
- PCA rPCA( rPoints, Mat(), CV_PCA_DATA_AS_ROW, maxComponents ), cPCA;
- // 1. check C++ PCA & ROW
- Mat rPrjTestPoints = rPCA.project( rTestPoints );
- Mat rBackPrjTestPoints = rPCA.backProject( rPrjTestPoints );
- Mat avg(1, sz.width, CV_32FC1 );
- cv::reduce( rPoints, avg, 0, REDUCE_AVG );
- Mat Q = rPoints - repeat( avg, rPoints.rows, 1 ), Qt = Q.t(), eval, evec;
- Q = Qt * Q;
- Q = Q /(float)rPoints.rows;
- eigen( Q, eval, evec );
- /*SVD svd(Q);
- evec = svd.vt;
- eval = svd.w;*/
- Mat subEval( maxComponents, 1, eval.type(), eval.ptr() ),
- subEvec( maxComponents, evec.cols, evec.type(), evec.ptr() );
- #ifdef CHECK_C
- Mat prjTestPoints, backPrjTestPoints, cPoints = rPoints.t(), cTestPoints = rTestPoints.t();
- CvMat _points, _testPoints, _avg, _eval, _evec, _prjTestPoints, _backPrjTestPoints;
- #endif
- // check eigen()
- double eigenEps = 1e-4;
- double err;
- for(int i = 0; i < Q.rows; i++ )
- {
- Mat v = evec.row(i).t();
- Mat Qv = Q * v;
- Mat lv = eval.at<float>(i,0) * v;
- err = cvtest::norm(Qv, lv, NORM_L2 | NORM_RELATIVE);
- EXPECT_LE(err, eigenEps) << "bad accuracy of eigen(); i = " << i;
- }
- // check pca eigenvalues
- evalEps = 1e-5, evecEps = 5e-3;
- err = cvtest::norm(rPCA.eigenvalues, subEval, NORM_L2 | NORM_RELATIVE);
- EXPECT_LE(err , evalEps) << "pca.eigenvalues is incorrect (CV_PCA_DATA_AS_ROW)";
- // check pca eigenvectors
- for(int i = 0; i < subEvec.rows; i++)
- {
- Mat r0 = rPCA.eigenvectors.row(i);
- Mat r1 = subEvec.row(i);
- // eigenvectors have normalized length, but both directions v and -v are valid
- double err1 = cvtest::norm(r0, r1, NORM_L2 | NORM_RELATIVE);
- double err2 = cvtest::norm(r0, -r1, NORM_L2 | NORM_RELATIVE);
- err = std::min(err1, err2);
- if (err > evecEps)
- {
- Mat tmp;
- absdiff(rPCA.eigenvectors, subEvec, tmp);
- double mval = 0; Point mloc;
- minMaxLoc(tmp, 0, &mval, 0, &mloc);
- EXPECT_LE(err, evecEps) << "pca.eigenvectors is incorrect (CV_PCA_DATA_AS_ROW) at " << i << " "
- << cv::format("max diff is %g at (i=%d, j=%d) (%g vs %g)\n",
- mval, mloc.y, mloc.x, rPCA.eigenvectors.at<float>(mloc.y, mloc.x),
- subEvec.at<float>(mloc.y, mloc.x))
- << "r0=" << r0 << std::endl
- << "r1=" << r1 << std::endl
- << "err1=" << err1 << " err2=" << err2
- ;
- }
- }
- prjEps = 1.265, backPrjEps = 1.265;
- for( int i = 0; i < rTestPoints.rows; i++ )
- {
- // check pca project
- Mat subEvec_t = subEvec.t();
- Mat prj = rTestPoints.row(i) - avg; prj *= subEvec_t;
- err = cvtest::norm(rPrjTestPoints.row(i), prj, NORM_L2 | NORM_RELATIVE);
- if (err < prjEps)
- {
- EXPECT_LE(err, prjEps) << "bad accuracy of project() (CV_PCA_DATA_AS_ROW)";
- continue;
- }
- // check pca backProject
- Mat backPrj = rPrjTestPoints.row(i) * subEvec + avg;
- err = cvtest::norm(rBackPrjTestPoints.row(i), backPrj, NORM_L2 | NORM_RELATIVE);
- if (err > backPrjEps)
- {
- EXPECT_LE(err, backPrjEps) << "bad accuracy of backProject() (CV_PCA_DATA_AS_ROW)";
- continue;
- }
- }
- // 2. check C++ PCA & COL
- cPCA( rPoints.t(), Mat(), CV_PCA_DATA_AS_COL, maxComponents );
- diffPrjEps = 1, diffBackPrjEps = 1;
- Mat ocvPrjTestPoints = cPCA.project(rTestPoints.t());
- err = cvtest::norm(cv::abs(ocvPrjTestPoints), cv::abs(rPrjTestPoints.t()), NORM_L2 | NORM_RELATIVE);
- ASSERT_LE(err, diffPrjEps) << "bad accuracy of project() (CV_PCA_DATA_AS_COL)";
- err = cvtest::norm(cPCA.backProject(ocvPrjTestPoints), rBackPrjTestPoints.t(), NORM_L2 | NORM_RELATIVE);
- ASSERT_LE(err, diffBackPrjEps) << "bad accuracy of backProject() (CV_PCA_DATA_AS_COL)";
- // 3. check C++ PCA w/retainedVariance
- cPCA( rPoints.t(), Mat(), CV_PCA_DATA_AS_COL, retainedVariance );
- diffPrjEps = 1, diffBackPrjEps = 1;
- Mat rvPrjTestPoints = cPCA.project(rTestPoints.t());
- if( cPCA.eigenvectors.rows > maxComponents)
- err = cvtest::norm(cv::abs(rvPrjTestPoints.rowRange(0,maxComponents)), cv::abs(rPrjTestPoints.t()), NORM_L2 | NORM_RELATIVE);
- else
- err = cvtest::norm(cv::abs(rvPrjTestPoints), cv::abs(rPrjTestPoints.colRange(0,cPCA.eigenvectors.rows).t()), NORM_L2 | NORM_RELATIVE);
- ASSERT_LE(err, diffPrjEps) << "bad accuracy of project() (CV_PCA_DATA_AS_COL); retainedVariance=" << retainedVariance;
- err = cvtest::norm(cPCA.backProject(rvPrjTestPoints), rBackPrjTestPoints.t(), NORM_L2 | NORM_RELATIVE);
- ASSERT_LE(err, diffBackPrjEps) << "bad accuracy of backProject() (CV_PCA_DATA_AS_COL); retainedVariance=" << retainedVariance;
- #ifdef CHECK_C
- // 4. check C PCA & ROW
- _points = cvMat(rPoints);
- _testPoints = cvMat(rTestPoints);
- _avg = cvMat(avg);
- _eval = cvMat(eval);
- _evec = cvMat(evec);
- prjTestPoints.create(rTestPoints.rows, maxComponents, rTestPoints.type() );
- backPrjTestPoints.create(rPoints.size(), rPoints.type() );
- _prjTestPoints = cvMat(prjTestPoints);
- _backPrjTestPoints = cvMat(backPrjTestPoints);
- cvCalcPCA( &_points, &_avg, &_eval, &_evec, CV_PCA_DATA_AS_ROW );
- cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints );
- cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints );
- err = cvtest::norm(prjTestPoints, rPrjTestPoints, NORM_L2 | NORM_RELATIVE);
- ASSERT_LE(err, diffPrjEps) << "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_ROW)";
- err = cvtest::norm(backPrjTestPoints, rBackPrjTestPoints, NORM_L2 | NORM_RELATIVE);
- ASSERT_LE(err, diffBackPrjEps) << "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_ROW)";
- // 5. check C PCA & COL
- _points = cvMat(cPoints);
- _testPoints = cvMat(cTestPoints);
- avg = avg.t(); _avg = cvMat(avg);
- eval = eval.t(); _eval = cvMat(eval);
- evec = evec.t(); _evec = cvMat(evec);
- prjTestPoints = prjTestPoints.t(); _prjTestPoints = cvMat(prjTestPoints);
- backPrjTestPoints = backPrjTestPoints.t(); _backPrjTestPoints = cvMat(backPrjTestPoints);
- cvCalcPCA( &_points, &_avg, &_eval, &_evec, CV_PCA_DATA_AS_COL );
- cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints );
- cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints );
- err = cvtest::norm(cv::abs(prjTestPoints), cv::abs(rPrjTestPoints.t()), NORM_L2 | NORM_RELATIVE);
- ASSERT_LE(err, diffPrjEps) << "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_COL)";
- err = cvtest::norm(backPrjTestPoints, rBackPrjTestPoints.t(), NORM_L2 | NORM_RELATIVE);
- ASSERT_LE(err, diffBackPrjEps) << "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_COL)";
- #endif
- // Test read and write
- FileStorage fs( "PCA_store.yml", FileStorage::WRITE );
- rPCA.write( fs );
- fs.release();
- PCA lPCA;
- fs.open( "PCA_store.yml", FileStorage::READ );
- lPCA.read( fs.root() );
- err = cvtest::norm(rPCA.eigenvectors, lPCA.eigenvectors, NORM_L2 | NORM_RELATIVE);
- EXPECT_LE(err, 0) << "bad accuracy of write/load functions (YML)";
- err = cvtest::norm(rPCA.eigenvalues, lPCA.eigenvalues, NORM_L2 | NORM_RELATIVE);
- EXPECT_LE(err, 0) << "bad accuracy of write/load functions (YML)";
- err = cvtest::norm(rPCA.mean, lPCA.mean, NORM_L2 | NORM_RELATIVE);
- EXPECT_LE(err, 0) << "bad accuracy of write/load functions (YML)";
- }
- class Core_ArrayOpTest : public cvtest::BaseTest
- {
- public:
- Core_ArrayOpTest();
- ~Core_ArrayOpTest();
- protected:
- void run(int);
- };
- Core_ArrayOpTest::Core_ArrayOpTest()
- {
- }
- Core_ArrayOpTest::~Core_ArrayOpTest() {}
- static string idx2string(const int* idx, int dims)
- {
- char buf[256];
- char* ptr = buf;
- for( int k = 0; k < dims; k++ )
- {
- sprintf(ptr, "%4d ", idx[k]);
- ptr += strlen(ptr);
- }
- ptr[-1] = '\0';
- return string(buf);
- }
- static const int* string2idx(const string& s, int* idx, int dims)
- {
- const char* ptr = s.c_str();
- for( int k = 0; k < dims; k++ )
- {
- int n = 0;
- sscanf(ptr, "%d%n", idx + k, &n);
- ptr += n;
- }
- return idx;
- }
- static double getValue(SparseMat& M, const int* idx, RNG& rng)
- {
- int d = M.dims();
- size_t hv = 0, *phv = 0;
- if( (unsigned)rng % 2 )
- {
- hv = d == 2 ? M.hash(idx[0], idx[1]) :
- d == 3 ? M.hash(idx[0], idx[1], idx[2]) : M.hash(idx);
- phv = &hv;
- }
- const uchar* ptr = d == 2 ? M.ptr(idx[0], idx[1], false, phv) :
- d == 3 ? M.ptr(idx[0], idx[1], idx[2], false, phv) :
- M.ptr(idx, false, phv);
- return !ptr ? 0 : M.type() == CV_32F ? *(float*)ptr : M.type() == CV_64F ? *(double*)ptr : 0;
- }
- static double getValue(const CvSparseMat* M, const int* idx)
- {
- int type = 0;
- const uchar* ptr = cvPtrND(M, idx, &type, 0);
- return !ptr ? 0 : type == CV_32F ? *(float*)ptr : type == CV_64F ? *(double*)ptr : 0;
- }
- static void eraseValue(SparseMat& M, const int* idx, RNG& rng)
- {
- int d = M.dims();
- size_t hv = 0, *phv = 0;
- if( (unsigned)rng % 2 )
- {
- hv = d == 2 ? M.hash(idx[0], idx[1]) :
- d == 3 ? M.hash(idx[0], idx[1], idx[2]) : M.hash(idx);
- phv = &hv;
- }
- if( d == 2 )
- M.erase(idx[0], idx[1], phv);
- else if( d == 3 )
- M.erase(idx[0], idx[1], idx[2], phv);
- else
- M.erase(idx, phv);
- }
- static void eraseValue(CvSparseMat* M, const int* idx)
- {
- cvClearND(M, idx);
- }
- static void setValue(SparseMat& M, const int* idx, double value, RNG& rng)
- {
- int d = M.dims();
- size_t hv = 0, *phv = 0;
- if( (unsigned)rng % 2 )
- {
- hv = d == 2 ? M.hash(idx[0], idx[1]) :
- d == 3 ? M.hash(idx[0], idx[1], idx[2]) : M.hash(idx);
- phv = &hv;
- }
- uchar* ptr = d == 2 ? M.ptr(idx[0], idx[1], true, phv) :
- d == 3 ? M.ptr(idx[0], idx[1], idx[2], true, phv) :
- M.ptr(idx, true, phv);
- if( M.type() == CV_32F )
- *(float*)ptr = (float)value;
- else if( M.type() == CV_64F )
- *(double*)ptr = value;
- else
- CV_Error(CV_StsUnsupportedFormat, "");
- }
- template<typename Pixel>
- struct InitializerFunctor{
- /// Initializer for cv::Mat::forEach test
- void operator()(Pixel & pixel, const int * idx) const {
- pixel.x = idx[0];
- pixel.y = idx[1];
- pixel.z = idx[2];
- }
- };
- template<typename Pixel>
- struct InitializerFunctor5D{
- /// Initializer for cv::Mat::forEach test (5 dimensional case)
- void operator()(Pixel & pixel, const int * idx) const {
- pixel[0] = idx[0];
- pixel[1] = idx[1];
- pixel[2] = idx[2];
- pixel[3] = idx[3];
- pixel[4] = idx[4];
- }
- };
- template<typename Pixel>
- struct EmptyFunctor
- {
- void operator()(const Pixel &, const int *) const {}
- };
- void Core_ArrayOpTest::run( int /* start_from */)
- {
- int errcount = 0;
- // dense matrix operations
- {
- int sz3[] = {5, 10, 15};
- MatND A(3, sz3, CV_32F), B(3, sz3, CV_16SC4);
- CvMatND matA = cvMatND(A), matB = cvMatND(B);
- RNG rng;
- rng.fill(A, CV_RAND_UNI, Scalar::all(-10), Scalar::all(10));
- rng.fill(B, CV_RAND_UNI, Scalar::all(-10), Scalar::all(10));
- int idx0[] = {3,4,5}, idx1[] = {0, 9, 7};
- float val0 = 130;
- Scalar val1(-1000, 30, 3, 8);
- cvSetRealND(&matA, idx0, val0);
- cvSetReal3D(&matA, idx1[0], idx1[1], idx1[2], -val0);
- cvSetND(&matB, idx0, cvScalar(val1));
- cvSet3D(&matB, idx1[0], idx1[1], idx1[2], cvScalar(-val1));
- Ptr<CvMatND> matC(cvCloneMatND(&matB));
- if( A.at<float>(idx0[0], idx0[1], idx0[2]) != val0 ||
- A.at<float>(idx1[0], idx1[1], idx1[2]) != -val0 ||
- cvGetReal3D(&matA, idx0[0], idx0[1], idx0[2]) != val0 ||
- cvGetRealND(&matA, idx1) != -val0 ||
- Scalar(B.at<Vec4s>(idx0[0], idx0[1], idx0[2])) != val1 ||
- Scalar(B.at<Vec4s>(idx1[0], idx1[1], idx1[2])) != -val1 ||
- Scalar(cvGet3D(matC, idx0[0], idx0[1], idx0[2])) != val1 ||
- Scalar(cvGetND(matC, idx1)) != -val1 )
- {
- ts->printf(cvtest::TS::LOG, "one of cvSetReal3D, cvSetRealND, cvSet3D, cvSetND "
- "or the corresponding *Get* functions is not correct\n");
- errcount++;
- }
- }
- // test cv::Mat::forEach
- {
- const int dims[3] = { 101, 107, 7 };
- typedef cv::Point3i Pixel;
- cv::Mat a = cv::Mat::zeros(3, dims, CV_32SC3);
- InitializerFunctor<Pixel> initializer;
- a.forEach<Pixel>(initializer);
- uint64 total = 0;
- bool error_reported = false;
- for (int i0 = 0; i0 < dims[0]; ++i0) {
- for (int i1 = 0; i1 < dims[1]; ++i1) {
- for (int i2 = 0; i2 < dims[2]; ++i2) {
- Pixel& pixel = a.at<Pixel>(i0, i1, i2);
- if (pixel.x != i0 || pixel.y != i1 || pixel.z != i2) {
- if (!error_reported) {
- ts->printf(cvtest::TS::LOG, "forEach is not correct.\n"
- "First error detected at (%d, %d, %d).\n", pixel.x, pixel.y, pixel.z);
- error_reported = true;
- }
- errcount++;
- }
- total += pixel.x;
- total += pixel.y;
- total += pixel.z;
- }
- }
- }
- uint64 total2 = 0;
- for (size_t i = 0; i < sizeof(dims) / sizeof(dims[0]); ++i) {
- total2 += ((dims[i] - 1) * dims[i] / 2) * dims[0] * dims[1] * dims[2] / dims[i];
- }
- if (total != total2) {
- ts->printf(cvtest::TS::LOG, "forEach is not correct because total is invalid.\n");
- errcount++;
- }
- }
- // test cv::Mat::forEach
- // with a matrix that has more dimensions than columns
- // See https://github.com/opencv/opencv/issues/8447
- {
- const int dims[5] = { 2, 2, 2, 2, 2 };
- typedef cv::Vec<int, 5> Pixel;
- cv::Mat a = cv::Mat::zeros(5, dims, CV_32SC(5));
- InitializerFunctor5D<Pixel> initializer;
- a.forEach<Pixel>(initializer);
- uint64 total = 0;
- bool error_reported = false;
- for (int i0 = 0; i0 < dims[0]; ++i0) {
- for (int i1 = 0; i1 < dims[1]; ++i1) {
- for (int i2 = 0; i2 < dims[2]; ++i2) {
- for (int i3 = 0; i3 < dims[3]; ++i3) {
- for (int i4 = 0; i4 < dims[4]; ++i4) {
- const int i[5] = { i0, i1, i2, i3, i4 };
- Pixel& pixel = a.at<Pixel>(i);
- if (pixel[0] != i0 || pixel[1] != i1 || pixel[2] != i2 || pixel[3] != i3 || pixel[4] != i4) {
- if (!error_reported) {
- ts->printf(cvtest::TS::LOG, "forEach is not correct.\n"
- "First error detected at position (%d, %d, %d, %d, %d), got value (%d, %d, %d, %d, %d).\n",
- i0, i1, i2, i3, i4,
- pixel[0], pixel[1], pixel[2], pixel[3], pixel[4]);
- error_reported = true;
- }
- errcount++;
- }
- total += pixel[0];
- total += pixel[1];
- total += pixel[2];
- total += pixel[3];
- total += pixel[4];
- }
- }
- }
- }
- }
- uint64 total2 = 0;
- for (size_t i = 0; i < sizeof(dims) / sizeof(dims[0]); ++i) {
- total2 += ((dims[i] - 1) * dims[i] / 2) * dims[0] * dims[1] * dims[2] * dims[3] * dims[4] / dims[i];
- }
- if (total != total2) {
- ts->printf(cvtest::TS::LOG, "forEach is not correct because total is invalid.\n");
- errcount++;
- }
- }
- // test const cv::Mat::forEach
- {
- const Mat a(10, 10, CV_32SC3);
- Mat b(10, 10, CV_32SC3);
- const Mat & c = b;
- a.forEach<Point3i>(EmptyFunctor<Point3i>());
- b.forEach<Point3i>(EmptyFunctor<const Point3i>());
- c.forEach<Point3i>(EmptyFunctor<Point3i>());
- // tests compilation, no runtime check is needed
- }
- RNG rng;
- const int MAX_DIM = 5, MAX_DIM_SZ = 10;
- // sparse matrix operations
- for( int si = 0; si < 10; si++ )
- {
- int depth = (unsigned)rng % 2 == 0 ? CV_32F : CV_64F;
- int dims = ((unsigned)rng % MAX_DIM) + 1;
- int i, k, size[MAX_DIM]={0}, idx[MAX_DIM]={0};
- vector<string> all_idxs;
- vector<double> all_vals;
- vector<double> all_vals2;
- string sidx, min_sidx, max_sidx;
- double min_val=0, max_val=0;
- int p = 1;
- for( k = 0; k < dims; k++ )
- {
- size[k] = ((unsigned)rng % MAX_DIM_SZ) + 1;
- p *= size[k];
- }
- SparseMat M( dims, size, depth );
- map<string, double> M0;
- int nz0 = (unsigned)rng % std::max(p/5,10);
- nz0 = std::min(std::max(nz0, 1), p);
- all_vals.resize(nz0);
- all_vals2.resize(nz0);
- Mat_<double> _all_vals(all_vals), _all_vals2(all_vals2);
- rng.fill(_all_vals, CV_RAND_UNI, Scalar(-1000), Scalar(1000));
- if( depth == CV_32F )
- {
- Mat _all_vals_f;
- _all_vals.convertTo(_all_vals_f, CV_32F);
- _all_vals_f.convertTo(_all_vals, CV_64F);
- }
- _all_vals.convertTo(_all_vals2, _all_vals2.type(), 2);
- if( depth == CV_32F )
- {
- Mat _all_vals2_f;
- _all_vals2.convertTo(_all_vals2_f, CV_32F);
- _all_vals2_f.convertTo(_all_vals2, CV_64F);
- }
- minMaxLoc(_all_vals, &min_val, &max_val);
- double _norm0 = cv/*test*/::norm(_all_vals, CV_C);
- double _norm1 = cv/*test*/::norm(_all_vals, CV_L1);
- double _norm2 = cv/*test*/::norm(_all_vals, CV_L2);
- for( i = 0; i < nz0; i++ )
- {
- for(;;)
- {
- for( k = 0; k < dims; k++ )
- idx[k] = (unsigned)rng % size[k];
- sidx = idx2string(idx, dims);
- if( M0.count(sidx) == 0 )
- break;
- }
- all_idxs.push_back(sidx);
- M0[sidx] = all_vals[i];
- if( all_vals[i] == min_val )
- min_sidx = sidx;
- if( all_vals[i] == max_val )
- max_sidx = sidx;
- setValue(M, idx, all_vals[i], rng);
- double v = getValue(M, idx, rng);
- if( v != all_vals[i] )
- {
- ts->printf(cvtest::TS::LOG, "%d. immediately after SparseMat[%s]=%.20g the current value is %.20g\n",
- i, sidx.c_str(), all_vals[i], v);
- errcount++;
- break;
- }
- }
- Ptr<CvSparseMat> M2(cvCreateSparseMat(M));
- MatND Md;
- M.copyTo(Md);
- SparseMat M3; SparseMat(Md).convertTo(M3, Md.type(), 2);
- int nz1 = (int)M.nzcount(), nz2 = (int)M3.nzcount();
- double norm0 = cv/*test*/::norm(M, CV_C);
- double norm1 = cv/*test*/::norm(M, CV_L1);
- double norm2 = cv/*test*/::norm(M, CV_L2);
- double eps = depth == CV_32F ? FLT_EPSILON*100 : DBL_EPSILON*1000;
- if( nz1 != nz0 || nz2 != nz0)
- {
- errcount++;
- ts->printf(cvtest::TS::LOG, "%d: The number of non-zero elements before/after converting to/from dense matrix is not correct: %d/%d (while it should be %d)\n",
- si, nz1, nz2, nz0 );
- break;
- }
- if( fabs(norm0 - _norm0) > fabs(_norm0)*eps ||
- fabs(norm1 - _norm1) > fabs(_norm1)*eps ||
- fabs(norm2 - _norm2) > fabs(_norm2)*eps )
- {
- errcount++;
- ts->printf(cvtest::TS::LOG, "%d: The norms are different: %.20g/%.20g/%.20g vs %.20g/%.20g/%.20g\n",
- si, norm0, norm1, norm2, _norm0, _norm1, _norm2 );
- break;
- }
- int n = (unsigned)rng % std::max(p/5,10);
- n = std::min(std::max(n, 1), p) + nz0;
- for( i = 0; i < n; i++ )
- {
- double val1, val2, val3, val0;
- if(i < nz0)
- {
- sidx = all_idxs[i];
- string2idx(sidx, idx, dims);
- val0 = all_vals[i];
- }
- else
- {
- for( k = 0; k < dims; k++ )
- idx[k] = (unsigned)rng % size[k];
- sidx = idx2string(idx, dims);
- val0 = M0[sidx];
- }
- val1 = getValue(M, idx, rng);
- val2 = getValue(M2, idx);
- val3 = getValue(M3, idx, rng);
- if( val1 != val0 || val2 != val0 || fabs(val3 - val0*2) > fabs(val0*2)*FLT_EPSILON )
- {
- errcount++;
- ts->printf(cvtest::TS::LOG, "SparseMat M[%s] = %g/%g/%g (while it should be %g)\n", sidx.c_str(), val1, val2, val3, val0 );
- break;
- }
- }
- for( i = 0; i < n; i++ )
- {
- double val1, val2;
- if(i < nz0)
- {
- sidx = all_idxs[i];
- string2idx(sidx, idx, dims);
- }
- else
- {
- for( k = 0; k < dims; k++ )
- idx[k] = (unsigned)rng % size[k];
- sidx = idx2string(idx, dims);
- }
- eraseValue(M, idx, rng);
- eraseValue(M2, idx);
- val1 = getValue(M, idx, rng);
- val2 = getValue(M2, idx);
- if( val1 != 0 || val2 != 0 )
- {
- errcount++;
- ts->printf(cvtest::TS::LOG, "SparseMat: after deleting M[%s], it is =%g/%g (while it should be 0)\n", sidx.c_str(), val1, val2 );
- break;
- }
- }
- int nz = (int)M.nzcount();
- if( nz != 0 )
- {
- errcount++;
- ts->printf(cvtest::TS::LOG, "The number of non-zero elements after removing all the elements = %d (while it should be 0)\n", nz );
- break;
- }
- int idx1[MAX_DIM], idx2[MAX_DIM];
- double val1 = 0, val2 = 0;
- M3 = SparseMat(Md);
- cv::minMaxLoc(M3, &val1, &val2, idx1, idx2);
- string s1 = idx2string(idx1, dims), s2 = idx2string(idx2, dims);
- if( val1 != min_val || val2 != max_val || s1 != min_sidx || s2 != max_sidx )
- {
- errcount++;
- ts->printf(cvtest::TS::LOG, "%d. Sparse: The value and positions of minimum/maximum elements are different from the reference values and positions:\n\t"
- "(%g, %g, %s, %s) vs (%g, %g, %s, %s)\n", si, val1, val2, s1.c_str(), s2.c_str(),
- min_val, max_val, min_sidx.c_str(), max_sidx.c_str());
- break;
- }
- cv::minMaxIdx(Md, &val1, &val2, idx1, idx2);
- s1 = idx2string(idx1, dims), s2 = idx2string(idx2, dims);
- if( (min_val < 0 && (val1 != min_val || s1 != min_sidx)) ||
- (max_val > 0 && (val2 != max_val || s2 != max_sidx)) )
- {
- errcount++;
- ts->printf(cvtest::TS::LOG, "%d. Dense: The value and positions of minimum/maximum elements are different from the reference values and positions:\n\t"
- "(%g, %g, %s, %s) vs (%g, %g, %s, %s)\n", si, val1, val2, s1.c_str(), s2.c_str(),
- min_val, max_val, min_sidx.c_str(), max_sidx.c_str());
- break;
- }
- }
- ts->set_failed_test_info(errcount == 0 ? cvtest::TS::OK : cvtest::TS::FAIL_INVALID_OUTPUT);
- }
- template <class T>
- int calcDiffElemCountImpl(const vector<Mat>& mv, const Mat& m)
- {
- int diffElemCount = 0;
- const int mChannels = m.channels();
- for(int y = 0; y < m.rows; y++)
- {
- for(int x = 0; x < m.cols; x++)
- {
- const T* mElem = &m.at<T>(y, x*mChannels);
- size_t loc = 0;
- for(size_t i = 0; i < mv.size(); i++)
- {
- const size_t mvChannel = mv[i].channels();
- const T* mvElem = &mv[i].at<T>(y, x*(int)mvChannel);
- for(size_t li = 0; li < mvChannel; li++)
- if(mElem[loc + li] != mvElem[li])
- diffElemCount++;
- loc += mvChannel;
- }
- CV_Assert(loc == (size_t)mChannels);
- }
- }
- return diffElemCount;
- }
- static
- int calcDiffElemCount(const vector<Mat>& mv, const Mat& m)
- {
- int depth = m.depth();
- switch (depth)
- {
- case CV_8U:
- return calcDiffElemCountImpl<uchar>(mv, m);
- case CV_8S:
- return calcDiffElemCountImpl<char>(mv, m);
- case CV_16U:
- return calcDiffElemCountImpl<unsigned short>(mv, m);
- case CV_16S:
- return calcDiffElemCountImpl<short int>(mv, m);
- case CV_32S:
- return calcDiffElemCountImpl<int>(mv, m);
- case CV_32F:
- return calcDiffElemCountImpl<float>(mv, m);
- case CV_64F:
- return calcDiffElemCountImpl<double>(mv, m);
- }
- return INT_MAX;
- }
- class Core_MergeSplitBaseTest : public cvtest::BaseTest
- {
- protected:
- virtual int run_case(int depth, size_t channels, const Size& size, RNG& rng) = 0;
- virtual void run(int)
- {
- // m is Mat
- // mv is vector<Mat>
- const int minMSize = 1;
- const int maxMSize = 100;
- const size_t maxMvSize = 10;
- RNG& rng = theRNG();
- Size mSize(rng.uniform(minMSize, maxMSize), rng.uniform(minMSize, maxMSize));
- size_t mvSize = rng.uniform(1, maxMvSize);
- int res = cvtest::TS::OK;
- int curRes = run_case(CV_8U, mvSize, mSize, rng);
- res = curRes != cvtest::TS::OK ? curRes : res;
- curRes = run_case(CV_8S, mvSize, mSize, rng);
- res = curRes != cvtest::TS::OK ? curRes : res;
- curRes = run_case(CV_16U, mvSize, mSize, rng);
- res = curRes != cvtest::TS::OK ? curRes : res;
- curRes = run_case(CV_16S, mvSize, mSize, rng);
- res = curRes != cvtest::TS::OK ? curRes : res;
- curRes = run_case(CV_32S, mvSize, mSize, rng);
- res = curRes != cvtest::TS::OK ? curRes : res;
- curRes = run_case(CV_32F, mvSize, mSize, rng);
- res = curRes != cvtest::TS::OK ? curRes : res;
- curRes = run_case(CV_64F, mvSize, mSize, rng);
- res = curRes != cvtest::TS::OK ? curRes : res;
- ts->set_failed_test_info(res);
- }
- };
- class Core_MergeTest : public Core_MergeSplitBaseTest
- {
- public:
- Core_MergeTest() {}
- ~Core_MergeTest() {}
- protected:
- virtual int run_case(int depth, size_t matCount, const Size& size, RNG& rng)
- {
- const int maxMatChannels = 10;
- vector<Mat> src(matCount);
- int channels = 0;
- for(size_t i = 0; i < src.size(); i++)
- {
- Mat m(size, CV_MAKETYPE(depth, rng.uniform(1,maxMatChannels)));
- rng.fill(m, RNG::UNIFORM, 0, 100, true);
- channels += m.channels();
- src[i] = m;
- }
- Mat dst;
- merge(src, dst);
- // check result
- std::stringstream commonLog;
- commonLog << "Depth " << depth << " :";
- if(dst.depth() != depth)
- {
- ts->printf(cvtest::TS::LOG, "%s incorrect depth of dst (%d instead of %d)\n",
- commonLog.str().c_str(), dst.depth(), depth);
- return cvtest::TS::FAIL_INVALID_OUTPUT;
- }
- if(dst.size() != size)
- {
- ts->printf(cvtest::TS::LOG, "%s incorrect size of dst (%d x %d instead of %d x %d)\n",
- commonLog.str().c_str(), dst.rows, dst.cols, size.height, size.width);
- return cvtest::TS::FAIL_INVALID_OUTPUT;
- }
- if(dst.channels() != channels)
- {
- ts->printf(cvtest::TS::LOG, "%s: incorrect channels count of dst (%d instead of %d)\n",
- commonLog.str().c_str(), dst.channels(), channels);
- return cvtest::TS::FAIL_INVALID_OUTPUT;
- }
- int diffElemCount = calcDiffElemCount(src, dst);
- if(diffElemCount > 0)
- {
- ts->printf(cvtest::TS::LOG, "%s: there are incorrect elements in dst (part of them is %f)\n",
- commonLog.str().c_str(), static_cast<float>(diffElemCount)/(channels*size.area()));
- return cvtest::TS::FAIL_INVALID_OUTPUT;
- }
- return cvtest::TS::OK;
- }
- };
- class Core_SplitTest : public Core_MergeSplitBaseTest
- {
- public:
- Core_SplitTest() {}
- ~Core_SplitTest() {}
- protected:
- virtual int run_case(int depth, size_t channels, const Size& size, RNG& rng)
- {
- Mat src(size, CV_MAKETYPE(depth, (int)channels));
- rng.fill(src, RNG::UNIFORM, 0, 100, true);
- vector<Mat> dst;
- split(src, dst);
- // check result
- std::stringstream commonLog;
- commonLog << "Depth " << depth << " :";
- if(dst.size() != channels)
- {
- ts->printf(cvtest::TS::LOG, "%s incorrect count of matrices in dst (%d instead of %d)\n",
- commonLog.str().c_str(), dst.size(), channels);
- return cvtest::TS::FAIL_INVALID_OUTPUT;
- }
- for(size_t i = 0; i < dst.size(); i++)
- {
- if(dst[i].size() != size)
- {
- ts->printf(cvtest::TS::LOG, "%s incorrect size of dst[%d] (%d x %d instead of %d x %d)\n",
- commonLog.str().c_str(), i, dst[i].rows, dst[i].cols, size.height, size.width);
- return cvtest::TS::FAIL_INVALID_OUTPUT;
- }
- if(dst[i].depth() != depth)
- {
- ts->printf(cvtest::TS::LOG, "%s: incorrect depth of dst[%d] (%d instead of %d)\n",
- commonLog.str().c_str(), i, dst[i].depth(), depth);
- return cvtest::TS::FAIL_INVALID_OUTPUT;
- }
- if(dst[i].channels() != 1)
- {
- ts->printf(cvtest::TS::LOG, "%s: incorrect channels count of dst[%d] (%d instead of %d)\n",
- commonLog.str().c_str(), i, dst[i].channels(), 1);
- return cvtest::TS::FAIL_INVALID_OUTPUT;
- }
- }
- int diffElemCount = calcDiffElemCount(dst, src);
- if(diffElemCount > 0)
- {
- ts->printf(cvtest::TS::LOG, "%s: there are incorrect elements in dst (part of them is %f)\n",
- commonLog.str().c_str(), static_cast<float>(diffElemCount)/(channels*size.area()));
- return cvtest::TS::FAIL_INVALID_OUTPUT;
- }
- return cvtest::TS::OK;
- }
- };
- TEST(Core_Reduce, accuracy) { Core_ReduceTest test; test.safe_run(); }
- TEST(Core_Array, basic_operations) { Core_ArrayOpTest test; test.safe_run(); }
- TEST(Core_Merge, shape_operations) { Core_MergeTest test; test.safe_run(); }
- TEST(Core_Split, shape_operations) { Core_SplitTest test; test.safe_run(); }
- TEST(Core_IOArray, submat_assignment)
- {
- Mat1f A = Mat1f::zeros(2,2);
- Mat1f B = Mat1f::ones(1,3);
- EXPECT_THROW( B.colRange(0,3).copyTo(A.row(0)), cv::Exception );
- EXPECT_NO_THROW( B.colRange(0,2).copyTo(A.row(0)) );
- EXPECT_EQ( 1.0f, A(0,0) );
- EXPECT_EQ( 1.0f, A(0,1) );
- }
- void OutputArray_create1(OutputArray m) { m.create(1, 2, CV_32S); }
- void OutputArray_create2(OutputArray m) { m.create(1, 3, CV_32F); }
- TEST(Core_IOArray, submat_create)
- {
- Mat1f A = Mat1f::zeros(2,2);
- EXPECT_THROW( OutputArray_create1(A.row(0)), cv::Exception );
- EXPECT_THROW( OutputArray_create2(A.row(0)), cv::Exception );
- }
- TEST(Core_Mat, issue4457_pass_null_ptr)
- {
- ASSERT_ANY_THROW(cv::Mat mask(45, 45, CV_32F, 0));
- }
- TEST(Core_Mat, reshape_1942)
- {
- cv::Mat A = (cv::Mat_<float>(2,3) << 3.4884074, 1.4159607, 0.78737736, 2.3456569, -0.88010466, 0.3009364);
- int cn = 0;
- ASSERT_NO_THROW(
- cv::Mat_<float> M = A.reshape(3);
- cn = M.channels();
- );
- ASSERT_EQ(1, cn);
- }
- static void check_ndim_shape(const cv::Mat &mat, int cn, int ndims, const int *sizes)
- {
- EXPECT_EQ(mat.channels(), cn);
- EXPECT_EQ(mat.dims, ndims);
- if (mat.dims != ndims)
- return;
- for (int i = 0; i < ndims; i++)
- EXPECT_EQ(mat.size[i], sizes[i]);
- }
- TEST(Core_Mat, reshape_ndims_2)
- {
- const cv::Mat A(8, 16, CV_8UC3);
- cv::Mat B;
- {
- int new_sizes_mask[] = { 0, 3, 4, 4 };
- int new_sizes_real[] = { 8, 3, 4, 4 };
- ASSERT_NO_THROW(B = A.reshape(1, 4, new_sizes_mask));
- check_ndim_shape(B, 1, 4, new_sizes_real);
- }
- {
- int new_sizes[] = { 16, 8 };
- ASSERT_NO_THROW(B = A.reshape(0, 2, new_sizes));
- check_ndim_shape(B, 3, 2, new_sizes);
- EXPECT_EQ(B.rows, new_sizes[0]);
- EXPECT_EQ(B.cols, new_sizes[1]);
- }
- {
- int new_sizes[] = { 2, 5, 1, 3 };
- cv::Mat A_sliced = A(cv::Range::all(), cv::Range(0, 15));
- ASSERT_ANY_THROW(A_sliced.reshape(4, 4, new_sizes));
- }
- }
- TEST(Core_Mat, reshape_ndims_4)
- {
- const int sizes[] = { 2, 6, 4, 12 };
- const cv::Mat A(4, sizes, CV_8UC3);
- cv::Mat B;
- {
- int new_sizes_mask[] = { 0, 864 };
- int new_sizes_real[] = { 2, 864 };
- ASSERT_NO_THROW(B = A.reshape(1, 2, new_sizes_mask));
- check_ndim_shape(B, 1, 2, new_sizes_real);
- EXPECT_EQ(B.rows, new_sizes_real[0]);
- EXPECT_EQ(B.cols, new_sizes_real[1]);
- }
- {
- int new_sizes_mask[] = { 4, 0, 0, 2, 3 };
- int new_sizes_real[] = { 4, 6, 4, 2, 3 };
- ASSERT_NO_THROW(B = A.reshape(0, 5, new_sizes_mask));
- check_ndim_shape(B, 3, 5, new_sizes_real);
- }
- {
- int new_sizes_mask[] = { 1, 1 };
- ASSERT_ANY_THROW(A.reshape(0, 2, new_sizes_mask));
- }
- {
- int new_sizes_mask[] = { 4, 6, 3, 3, 0 };
- ASSERT_ANY_THROW(A.reshape(0, 5, new_sizes_mask));
- }
- }
- TEST(Core_Mat, push_back)
- {
- Mat a = (Mat_<float>(1,2) << 3.4884074f, 1.4159607f);
- Mat b = (Mat_<float>(1,2) << 0.78737736f, 2.3456569f);
- a.push_back(b);
- ASSERT_EQ(2, a.cols);
- ASSERT_EQ(2, a.rows);
- ASSERT_FLOAT_EQ(3.4884074f, a.at<float>(0, 0));
- ASSERT_FLOAT_EQ(1.4159607f, a.at<float>(0, 1));
- ASSERT_FLOAT_EQ(0.78737736f, a.at<float>(1, 0));
- ASSERT_FLOAT_EQ(2.3456569f, a.at<float>(1, 1));
- Mat c = (Mat_<float>(2,2) << -0.88010466f, 0.3009364f, 2.22399974f, -5.45933905f);
- ASSERT_EQ(c.rows, a.cols);
- a.push_back(c.t());
- ASSERT_EQ(2, a.cols);
- ASSERT_EQ(4, a.rows);
- ASSERT_FLOAT_EQ(3.4884074f, a.at<float>(0, 0));
- ASSERT_FLOAT_EQ(1.4159607f, a.at<float>(0, 1));
- ASSERT_FLOAT_EQ(0.78737736f, a.at<float>(1, 0));
- ASSERT_FLOAT_EQ(2.3456569f, a.at<float>(1, 1));
- ASSERT_FLOAT_EQ(-0.88010466f, a.at<float>(2, 0));
- ASSERT_FLOAT_EQ(2.22399974f, a.at<float>(2, 1));
- ASSERT_FLOAT_EQ(0.3009364f, a.at<float>(3, 0));
- ASSERT_FLOAT_EQ(-5.45933905f, a.at<float>(3, 1));
- a.push_back(Mat::ones(2, 2, CV_32FC1));
- ASSERT_EQ(6, a.rows);
- for(int row=4; row<a.rows; row++) {
- for(int col=0; col<a.cols; col++) {
- ASSERT_FLOAT_EQ(1.f, a.at<float>(row, col));
- }
- }
- }
- TEST(Core_Mat, copyNx1ToVector)
- {
- cv::Mat_<uchar> src(5, 1);
- cv::Mat_<uchar> ref_dst8;
- cv::Mat_<ushort> ref_dst16;
- std::vector<uchar> dst8;
- std::vector<ushort> dst16;
- src << 1, 2, 3, 4, 5;
- src.copyTo(ref_dst8);
- src.copyTo(dst8);
- ASSERT_PRED_FORMAT2(cvtest::MatComparator(0, 0), ref_dst8, cv::Mat_<uchar>(dst8));
- src.convertTo(ref_dst16, CV_16U);
- src.convertTo(dst16, CV_16U);
- ASSERT_PRED_FORMAT2(cvtest::MatComparator(0, 0), ref_dst16, cv::Mat_<ushort>(dst16));
- }
- TEST(Core_Matx, fromMat_)
- {
- Mat_<double> a = (Mat_<double>(2,2) << 10, 11, 12, 13);
- Matx22d b(a);
- ASSERT_EQ( cvtest::norm(a, b, NORM_INF), 0.);
- }
- TEST(Core_Matx, from_initializer_list)
- {
- Mat_<double> a = (Mat_<double>(2,2) << 10, 11, 12, 13);
- Matx22d b = {10, 11, 12, 13};
- ASSERT_EQ( cvtest::norm(a, b, NORM_INF), 0.);
- }
- TEST(Core_Mat, regression_9507)
- {
- cv::Mat m = Mat::zeros(5, 5, CV_8UC3);
- cv::Mat m2{m};
- EXPECT_EQ(25u, m2.total());
- }
- TEST(Core_InputArray, empty)
- {
- vector<vector<Point> > data;
- ASSERT_TRUE( _InputArray(data).empty() );
- }
- TEST(Core_CopyMask, bug1918)
- {
- Mat_<unsigned char> tmpSrc(100,100);
- tmpSrc = 124;
- Mat_<unsigned char> tmpMask(100,100);
- tmpMask = 255;
- Mat_<unsigned char> tmpDst(100,100);
- tmpDst = 2;
- tmpSrc.copyTo(tmpDst,tmpMask);
- ASSERT_EQ(sum(tmpDst)[0], 124*100*100);
- }
- TEST(Core_SVD, orthogonality)
- {
- for( int i = 0; i < 2; i++ )
- {
- int type = i == 0 ? CV_32F : CV_64F;
- Mat mat_D(2, 2, type);
- mat_D.setTo(88.);
- Mat mat_U, mat_W;
- SVD::compute(mat_D, mat_W, mat_U, noArray(), SVD::FULL_UV);
- mat_U *= mat_U.t();
- ASSERT_LT(cvtest::norm(mat_U, Mat::eye(2, 2, type), NORM_INF), 1e-5);
- }
- }
- TEST(Core_SparseMat, footprint)
- {
- int n = 1000000;
- int sz[] = { n, n };
- SparseMat m(2, sz, CV_64F);
- int nodeSize0 = (int)m.hdr->nodeSize;
- double dataSize0 = ((double)m.hdr->pool.size() + (double)m.hdr->hashtab.size()*sizeof(size_t))*1e-6;
- printf("before: node size=%d bytes, data size=%.0f Mbytes\n", nodeSize0, dataSize0);
- for (int i = 0; i < n; i++)
- {
- m.ref<double>(i, i) = 1;
- }
- double dataSize1 = ((double)m.hdr->pool.size() + (double)m.hdr->hashtab.size()*sizeof(size_t))*1e-6;
- double threshold = (n*nodeSize0*1.6 + n*2.*sizeof(size_t))*1e-6;
- printf("after: data size=%.0f Mbytes, threshold=%.0f MBytes\n", dataSize1, threshold);
- ASSERT_LE((int)m.hdr->nodeSize, 32);
- ASSERT_LE(dataSize1, threshold);
- }
- // Can't fix without dirty hacks or broken user code (PR #4159)
- TEST(Core_Mat_vector, DISABLED_OutputArray_create_getMat)
- {
- cv::Mat_<uchar> src_base(5, 1);
- std::vector<uchar> dst8;
- src_base << 1, 2, 3, 4, 5;
- Mat src(src_base);
- OutputArray _dst(dst8);
- {
- _dst.create(src.rows, src.cols, src.type());
- Mat dst = _dst.getMat();
- EXPECT_EQ(src.dims, dst.dims);
- EXPECT_EQ(src.cols, dst.cols);
- EXPECT_EQ(src.rows, dst.rows);
- }
- }
- TEST(Core_Mat_vector, copyTo_roi_column)
- {
- cv::Mat_<uchar> src_base(5, 2);
- std::vector<uchar> dst1;
- src_base << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
- Mat src_full(src_base);
- Mat src(src_full.col(0));
- #if 0 // Can't fix without dirty hacks or broken user code (PR #4159)
- OutputArray _dst(dst1);
- {
- _dst.create(src.rows, src.cols, src.type());
- Mat dst = _dst.getMat();
- EXPECT_EQ(src.dims, dst.dims);
- EXPECT_EQ(src.cols, dst.cols);
- EXPECT_EQ(src.rows, dst.rows);
- }
- #endif
- std::vector<uchar> dst2;
- src.copyTo(dst2);
- std::cout << "src = " << src << std::endl;
- std::cout << "dst = " << Mat(dst2) << std::endl;
- EXPECT_EQ((size_t)5, dst2.size());
- EXPECT_EQ(1, (int)dst2[0]);
- EXPECT_EQ(3, (int)dst2[1]);
- EXPECT_EQ(5, (int)dst2[2]);
- EXPECT_EQ(7, (int)dst2[3]);
- EXPECT_EQ(9, (int)dst2[4]);
- }
- TEST(Core_Mat_vector, copyTo_roi_row)
- {
- cv::Mat_<uchar> src_base(2, 5);
- std::vector<uchar> dst1;
- src_base << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
- Mat src_full(src_base);
- Mat src(src_full.row(0));
- OutputArray _dst(dst1);
- {
- _dst.create(src.rows, src.cols, src.type());
- Mat dst = _dst.getMat();
- EXPECT_EQ(src.dims, dst.dims);
- EXPECT_EQ(src.cols, dst.cols);
- EXPECT_EQ(src.rows, dst.rows);
- }
- std::vector<uchar> dst2;
- src.copyTo(dst2);
- std::cout << "src = " << src << std::endl;
- std::cout << "dst = " << Mat(dst2) << std::endl;
- EXPECT_EQ((size_t)5, dst2.size());
- EXPECT_EQ(1, (int)dst2[0]);
- EXPECT_EQ(2, (int)dst2[1]);
- EXPECT_EQ(3, (int)dst2[2]);
- EXPECT_EQ(4, (int)dst2[3]);
- EXPECT_EQ(5, (int)dst2[4]);
- }
- TEST(Mat, regression_5991)
- {
- int sz[] = {2,3,2};
- Mat mat(3, sz, CV_32F, Scalar(1));
- ASSERT_NO_THROW(mat.convertTo(mat, CV_8U));
- EXPECT_EQ(sz[0], mat.size[0]);
- EXPECT_EQ(sz[1], mat.size[1]);
- EXPECT_EQ(sz[2], mat.size[2]);
- EXPECT_EQ(0, cvtest::norm(mat, Mat(3, sz, CV_8U, Scalar(1)), NORM_INF));
- }
- TEST(Mat, regression_9720)
- {
- Mat mat(1, 1, CV_32FC1);
- mat.at<float>(0) = 1.f;
- const float a = 0.1f;
- Mat me1 = (Mat)(mat.mul((a / mat)));
- Mat me2 = (Mat)(mat.mul((Mat)(a / mat)));
- Mat me3 = (Mat)(mat.mul((a * mat)));
- Mat me4 = (Mat)(mat.mul((Mat)(a * mat)));
- EXPECT_EQ(me1.at<float>(0), me2.at<float>(0));
- EXPECT_EQ(me3.at<float>(0), me4.at<float>(0));
- }
- #ifdef OPENCV_TEST_BIGDATA
- TEST(Mat, regression_6696_BigData_8Gb)
- {
- int width = 60000;
- int height = 10000;
- Mat destImageBGR = Mat(height, width, CV_8UC3, Scalar(1, 2, 3, 0));
- Mat destImageA = Mat(height, width, CV_8UC1, Scalar::all(4));
- vector<Mat> planes;
- split(destImageBGR, planes);
- planes.push_back(destImageA);
- merge(planes, destImageBGR);
- EXPECT_EQ(1, destImageBGR.at<Vec4b>(0)[0]);
- EXPECT_EQ(2, destImageBGR.at<Vec4b>(0)[1]);
- EXPECT_EQ(3, destImageBGR.at<Vec4b>(0)[2]);
- EXPECT_EQ(4, destImageBGR.at<Vec4b>(0)[3]);
- EXPECT_EQ(1, destImageBGR.at<Vec4b>(height-1, width-1)[0]);
- EXPECT_EQ(2, destImageBGR.at<Vec4b>(height-1, width-1)[1]);
- EXPECT_EQ(3, destImageBGR.at<Vec4b>(height-1, width-1)[2]);
- EXPECT_EQ(4, destImageBGR.at<Vec4b>(height-1, width-1)[3]);
- }
- #endif
- TEST(Reduce, regression_should_fail_bug_4594)
- {
- cv::Mat src = cv::Mat::eye(4, 4, CV_8U);
- std::vector<int> dst;
- EXPECT_THROW(cv::reduce(src, dst, 0, REDUCE_MIN, CV_32S), cv::Exception);
- EXPECT_THROW(cv::reduce(src, dst, 0, REDUCE_MAX, CV_32S), cv::Exception);
- EXPECT_NO_THROW(cv::reduce(src, dst, 0, REDUCE_SUM, CV_32S));
- EXPECT_NO_THROW(cv::reduce(src, dst, 0, REDUCE_AVG, CV_32S));
- }
- TEST(Mat, push_back_vector)
- {
- cv::Mat result(1, 5, CV_32FC1);
- std::vector<float> vec1(result.cols + 1);
- std::vector<int> vec2(result.cols);
- EXPECT_THROW(result.push_back(vec1), cv::Exception);
- EXPECT_THROW(result.push_back(vec2), cv::Exception);
- vec1.resize(result.cols);
- for (int i = 0; i < 5; ++i)
- result.push_back(cv::Mat(vec1).reshape(1, 1));
- ASSERT_EQ(6, result.rows);
- }
- TEST(Mat, regression_5917_clone_empty)
- {
- Mat cloned;
- Mat_<Point2f> source(5, 0);
- ASSERT_NO_THROW(cloned = source.clone());
- }
- TEST(Mat, regression_7873_mat_vector_initialize)
- {
- std::vector<int> dims;
- dims.push_back(12);
- dims.push_back(3);
- dims.push_back(2);
- Mat multi_mat(dims, CV_32FC1, cv::Scalar(0));
- ASSERT_EQ(3, multi_mat.dims);
- ASSERT_EQ(12, multi_mat.size[0]);
- ASSERT_EQ(3, multi_mat.size[1]);
- ASSERT_EQ(2, multi_mat.size[2]);
- std::vector<Range> ranges;
- ranges.push_back(Range(1, 2));
- ranges.push_back(Range::all());
- ranges.push_back(Range::all());
- Mat sub_mat = multi_mat(ranges);
- ASSERT_EQ(3, sub_mat.dims);
- ASSERT_EQ(1, sub_mat.size[0]);
- ASSERT_EQ(3, sub_mat.size[1]);
- ASSERT_EQ(2, sub_mat.size[2]);
- }
- TEST(Mat, regression_10507_mat_setTo)
- {
- Size sz(6, 4);
- Mat test_mask(sz, CV_8UC1, cv::Scalar::all(255));
- test_mask.at<uchar>(1,0) = 0;
- test_mask.at<uchar>(0,1) = 0;
- for (int cn = 1; cn <= 4; cn++)
- {
- cv::Mat A(sz, CV_MAKE_TYPE(CV_32F, cn), cv::Scalar::all(5));
- A.setTo(cv::Scalar::all(std::numeric_limits<float>::quiet_NaN()), test_mask);
- int nans = 0;
- for (int y = 0; y < A.rows; y++)
- {
- for (int x = 0; x < A.cols; x++)
- {
- for (int c = 0; c < cn; c++)
- {
- float v = A.ptr<float>(y, x)[c];
- nans += (v == v) ? 0 : 1;
- }
- }
- }
- EXPECT_EQ(nans, cn * (sz.area() - 2)) << "A=" << A << std::endl << "mask=" << test_mask << std::endl;
- }
- }
- TEST(Core_Mat_array, outputArray_create_getMat)
- {
- cv::Mat_<uchar> src_base(5, 1);
- std::array<uchar, 5> dst8;
- src_base << 1, 2, 3, 4, 5;
- Mat src(src_base);
- OutputArray _dst(dst8);
- {
- _dst.create(src.rows, src.cols, src.type());
- Mat dst = _dst.getMat();
- EXPECT_EQ(src.dims, dst.dims);
- EXPECT_EQ(src.cols, dst.cols);
- EXPECT_EQ(src.rows, dst.rows);
- }
- }
- TEST(Core_Mat_array, copyTo_roi_column)
- {
- cv::Mat_<uchar> src_base(5, 2);
- src_base << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
- Mat src_full(src_base);
- Mat src(src_full.col(0));
- std::array<uchar, 5> dst1;
- src.copyTo(dst1);
- std::cout << "src = " << src << std::endl;
- std::cout << "dst = " << Mat(dst1) << std::endl;
- EXPECT_EQ((size_t)5, dst1.size());
- EXPECT_EQ(1, (int)dst1[0]);
- EXPECT_EQ(3, (int)dst1[1]);
- EXPECT_EQ(5, (int)dst1[2]);
- EXPECT_EQ(7, (int)dst1[3]);
- EXPECT_EQ(9, (int)dst1[4]);
- }
- TEST(Core_Mat_array, copyTo_roi_row)
- {
- cv::Mat_<uchar> src_base(2, 5);
- std::array<uchar, 5> dst1;
- src_base << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
- Mat src_full(src_base);
- Mat src(src_full.row(0));
- OutputArray _dst(dst1);
- {
- _dst.create(5, 1, src.type());
- Mat dst = _dst.getMat();
- EXPECT_EQ(src.dims, dst.dims);
- EXPECT_EQ(1, dst.cols);
- EXPECT_EQ(5, dst.rows);
- }
- std::array<uchar, 5> dst2;
- src.copyTo(dst2);
- std::cout << "src = " << src << std::endl;
- std::cout << "dst = " << Mat(dst2) << std::endl;
- EXPECT_EQ(1, (int)dst2[0]);
- EXPECT_EQ(2, (int)dst2[1]);
- EXPECT_EQ(3, (int)dst2[2]);
- EXPECT_EQ(4, (int)dst2[3]);
- EXPECT_EQ(5, (int)dst2[4]);
- }
- TEST(Core_Mat_array, SplitMerge)
- {
- std::array<cv::Mat, 3> src;
- for (size_t i = 0; i < src.size(); ++i)
- {
- src[i] = Mat(10, 10, CV_8U, Scalar((double)(16 * (i + 1))));
- }
- Mat merged;
- merge(src, merged);
- std::array<cv::Mat, 3> dst;
- split(merged, dst);
- for (size_t i = 0; i < dst.size(); ++i)
- {
- EXPECT_EQ(0, cvtest::norm(src[i], dst[i], NORM_INF));
- }
- }
- TEST(Mat, regression_8680)
- {
- Mat_<Point2i> mat(3,1);
- ASSERT_EQ(mat.channels(), 2);
- mat.release();
- ASSERT_EQ(mat.channels(), 2);
- }
- TEST(Mat_, range_based_for)
- {
- Mat_<uchar> img = Mat_<uchar>::zeros(3, 3);
- for(auto& pixel : img)
- {
- pixel = 1;
- }
- Mat_<uchar> ref(3, 3);
- ref.setTo(Scalar(1));
- ASSERT_DOUBLE_EQ(cvtest::norm(img, ref, NORM_INF), 0.);
- }
- TEST(Mat, from_initializer_list)
- {
- Mat A({1.f, 2.f, 3.f});
- Mat_<float> B(3, 1); B << 1, 2, 3;
- Mat_<float> C({3}, {1,2,3});
- ASSERT_EQ(A.type(), CV_32F);
- ASSERT_DOUBLE_EQ(cvtest::norm(A, B, NORM_INF), 0.);
- ASSERT_DOUBLE_EQ(cvtest::norm(A, C, NORM_INF), 0.);
- ASSERT_DOUBLE_EQ(cvtest::norm(B, C, NORM_INF), 0.);
- auto D = Mat_<double>({2, 3}, {1, 2, 3, 4, 5, 6});
- EXPECT_EQ(2, D.rows);
- EXPECT_EQ(3, D.cols);
- }
- TEST(Mat_, from_initializer_list)
- {
- Mat_<float> A = {1, 2, 3};
- Mat_<float> B(3, 1); B << 1, 2, 3;
- Mat_<float> C({3}, {1,2,3});
- ASSERT_DOUBLE_EQ(cvtest::norm(A, B, NORM_INF), 0.);
- ASSERT_DOUBLE_EQ(cvtest::norm(A, C, NORM_INF), 0.);
- ASSERT_DOUBLE_EQ(cvtest::norm(B, C, NORM_INF), 0.);
- }
- TEST(Mat, template_based_ptr)
- {
- Mat mat = (Mat_<float>(2, 2) << 11.0f, 22.0f, 33.0f, 44.0f);
- int idx[2] = {1, 0};
- ASSERT_FLOAT_EQ(33.0f, *(mat.ptr<float>(idx)));
- idx[0] = 1;
- idx[1] = 1;
- ASSERT_FLOAT_EQ(44.0f, *(mat.ptr<float>(idx)));
- }
- TEST(Mat_, template_based_ptr)
- {
- int dim[4] = {2, 2, 1, 2};
- Mat_<float> mat = (Mat_<float>(4, dim) << 11.0f, 22.0f, 33.0f, 44.0f,
- 55.0f, 66.0f, 77.0f, 88.0f);
- int idx[4] = {1, 0, 0, 1};
- ASSERT_FLOAT_EQ(66.0f, *(mat.ptr<float>(idx)));
- }
- BIGDATA_TEST(Mat, push_back_regression_4158) // memory usage: ~10.6 Gb
- {
- Mat result;
- Mat tail(100, 500000, CV_32FC2, Scalar(1, 2));
- tail.copyTo(result);
- for (int i = 1; i < 15; i++)
- {
- result.push_back(tail);
- std::cout << "i = " << i << " result = " << result.size() << " used = " << (uint64)result.total()*result.elemSize()*(1.0 / (1 << 20)) << " Mb"
- << " allocated=" << (uint64)(result.datalimit - result.datastart)*(1.0 / (1 << 20)) << " Mb" << std::endl;
- }
- for (int i = 0; i < 15; i++)
- {
- Rect roi(0, tail.rows * i, tail.cols, tail.rows);
- int nz = countNonZero(result(roi).reshape(1) == 2);
- EXPECT_EQ(tail.total(), (size_t)nz) << "i=" << i;
- }
- }
- TEST(Core_Merge, hang_12171)
- {
- Mat src1(4, 24, CV_8UC1, Scalar::all(1));
- Mat src2(4, 24, CV_8UC1, Scalar::all(2));
- Rect src_roi(0, 0, 23, 4);
- Mat src_channels[2] = { src1(src_roi), src2(src_roi) };
- Mat dst(4, 24, CV_8UC2, Scalar::all(5));
- Rect dst_roi(1, 0, 23, 4);
- cv::merge(src_channels, 2, dst(dst_roi));
- EXPECT_EQ(5, dst.ptr<uchar>()[0]);
- EXPECT_EQ(5, dst.ptr<uchar>()[1]);
- EXPECT_EQ(1, dst.ptr<uchar>()[2]);
- EXPECT_EQ(2, dst.ptr<uchar>()[3]);
- EXPECT_EQ(5, dst.ptr<uchar>(1)[0]);
- EXPECT_EQ(5, dst.ptr<uchar>(1)[1]);
- EXPECT_EQ(1, dst.ptr<uchar>(1)[2]);
- EXPECT_EQ(2, dst.ptr<uchar>(1)[3]);
- }
- TEST(Core_Split, hang_12171)
- {
- Mat src(4, 24, CV_8UC2, Scalar(1,2,3,4));
- Rect src_roi(0, 0, 23, 4);
- Mat dst1(4, 24, CV_8UC1, Scalar::all(5));
- Mat dst2(4, 24, CV_8UC1, Scalar::all(10));
- Rect dst_roi(0, 0, 23, 4);
- Mat dst[2] = { dst1(dst_roi), dst2(dst_roi) };
- cv::split(src(src_roi), dst);
- EXPECT_EQ(1, dst1.ptr<uchar>()[0]);
- EXPECT_EQ(1, dst1.ptr<uchar>()[1]);
- EXPECT_EQ(2, dst2.ptr<uchar>()[0]);
- EXPECT_EQ(2, dst2.ptr<uchar>()[1]);
- EXPECT_EQ(1, dst1.ptr<uchar>(1)[0]);
- EXPECT_EQ(1, dst1.ptr<uchar>(1)[1]);
- EXPECT_EQ(2, dst2.ptr<uchar>(1)[0]);
- EXPECT_EQ(2, dst2.ptr<uchar>(1)[1]);
- }
- TEST(Core_Split, crash_12171)
- {
- Mat src(4, 40, CV_8UC2, Scalar(1,2,3,4));
- Rect src_roi(0, 0, 39, 4);
- Mat dst1(4, 40, CV_8UC1, Scalar::all(5));
- Mat dst2(4, 40, CV_8UC1, Scalar::all(10));
- Rect dst_roi(0, 0, 39, 4);
- Mat dst[2] = { dst1(dst_roi), dst2(dst_roi) };
- cv::split(src(src_roi), dst);
- EXPECT_EQ(1, dst1.ptr<uchar>()[0]);
- EXPECT_EQ(1, dst1.ptr<uchar>()[1]);
- EXPECT_EQ(2, dst2.ptr<uchar>()[0]);
- EXPECT_EQ(2, dst2.ptr<uchar>()[1]);
- EXPECT_EQ(1, dst1.ptr<uchar>(1)[0]);
- EXPECT_EQ(1, dst1.ptr<uchar>(1)[1]);
- EXPECT_EQ(2, dst2.ptr<uchar>(1)[0]);
- EXPECT_EQ(2, dst2.ptr<uchar>(1)[1]);
- }
- TEST(Core_Merge, bug_13544)
- {
- Mat src1(2, 2, CV_8UC3, Scalar::all(1));
- Mat src2(2, 2, CV_8UC3, Scalar::all(2));
- Mat src3(2, 2, CV_8UC3, Scalar::all(3));
- Mat src_arr[] = { src1, src2, src3 };
- Mat dst;
- merge(src_arr, 3, dst);
- ASSERT_EQ(9, dst.channels()); // Avoid memory access out of buffer
- EXPECT_EQ(3, (int)dst.ptr<uchar>(0)[6]);
- EXPECT_EQ(3, (int)dst.ptr<uchar>(0)[7]);
- EXPECT_EQ(3, (int)dst.ptr<uchar>(0)[8]);
- EXPECT_EQ(1, (int)dst.ptr<uchar>(1)[0]);
- EXPECT_EQ(1, (int)dst.ptr<uchar>(1)[1]);
- EXPECT_EQ(1, (int)dst.ptr<uchar>(1)[2]);
- EXPECT_EQ(2, (int)dst.ptr<uchar>(1)[3]);
- EXPECT_EQ(2, (int)dst.ptr<uchar>(1)[4]);
- EXPECT_EQ(2, (int)dst.ptr<uchar>(1)[5]);
- EXPECT_EQ(3, (int)dst.ptr<uchar>(1)[6]);
- EXPECT_EQ(3, (int)dst.ptr<uchar>(1)[7]);
- EXPECT_EQ(3, (int)dst.ptr<uchar>(1)[8]);
- }
- struct CustomType // like cv::Keypoint
- {
- Point2f pt;
- float size;
- float angle;
- float response;
- int octave;
- int class_id;
- };
- static void test_CustomType(InputArray src_, OutputArray dst_)
- {
- Mat src = src_.getMat();
- ASSERT_EQ(sizeof(CustomType), src.elemSize());
- CV_CheckTypeEQ(src.type(), CV_MAKETYPE(CV_8U, sizeof(CustomType)), "");
- CustomType* kpt = NULL;
- {
- Mat dst = dst_.getMat();
- for (size_t i = 0; i < dst.total(); i++)
- {
- kpt = dst.ptr<CustomType>(0) + i;
- kpt->octave = (int)i;
- }
- }
- const int N = (int)src.total();
- dst_.create(1, N * 2, rawType<CustomType>());
- Mat dst = dst_.getMat();
- for (size_t i = N; i < dst.total(); i++)
- {
- kpt = dst.ptr<CustomType>(0) + i;
- kpt->octave = -(int)i;
- }
- #if 0 // Compilation error
- CustomType& kpt = dst.at<CustomType>(0, 5);
- #endif
- }
- TEST(Core_InputArray, support_CustomType)
- {
- std::vector<CustomType> kp1(5);
- std::vector<CustomType> kp2(3);
- test_CustomType(rawIn(kp1), rawOut(kp2));
- ASSERT_EQ((size_t)10, kp2.size());
- for (int i = 0; i < 3; i++)
- {
- EXPECT_EQ(i, kp2[i].octave);
- }
- for (int i = 3; i < 5; i++)
- {
- EXPECT_EQ(0, kp2[i].octave);
- }
- for (int i = 5; i < 10; i++)
- {
- EXPECT_EQ(-i, kp2[i].octave);
- }
- }
- TEST(Core_InputArray, fetch_MatExpr)
- {
- Mat a(Size(10, 5), CV_32FC1, 5);
- Mat b(Size(10, 5), CV_32FC1, 2);
- MatExpr expr = a * b.t(); // gemm expression
- Mat dst;
- cv::add(expr, Scalar(1), dst); // invoke gemm() here
- void* expr_data = expr.a.data;
- Mat result = expr; // should not call gemm() here again
- EXPECT_EQ(expr_data, result.data); // expr data is reused
- EXPECT_EQ(dst.size(), result.size());
- }
- #ifdef CV_CXX11
- class TestInputArrayRangeChecking {
- static const char *kind2str(cv::_InputArray ia)
- {
- switch (ia.kind())
- {
- #define C(x) case cv::_InputArray::x: return #x
- C(MAT);
- C(UMAT);
- C(EXPR);
- C(MATX);
- C(STD_VECTOR);
- C(NONE);
- C(STD_VECTOR_VECTOR);
- C(STD_BOOL_VECTOR);
- C(STD_VECTOR_MAT);
- C(STD_ARRAY_MAT);
- C(STD_VECTOR_UMAT);
- C(CUDA_GPU_MAT);
- C(STD_VECTOR_CUDA_GPU_MAT);
- #undef C
- default:
- return "<unsupported>";
- }
- }
- static void banner(cv::_InputArray ia, const char *label, const char *name)
- {
- std::cout << std::endl
- << label << " = " << name << ", Kind: " << kind2str(ia)
- << std::endl;
- }
- template<typename I, typename F>
- static void testA(I ia, F f, const char *mfname)
- {
- banner(ia, "f", mfname);
- EXPECT_THROW(f(ia, -1), cv::Exception)
- << "f(ia, " << -1 << ") should throw cv::Exception";
- for (int i = 0; i < int(ia.size()); i++)
- {
- EXPECT_NO_THROW(f(ia, i))
- << "f(ia, " << i << ") should not throw an exception";
- }
- EXPECT_THROW(f(ia, int(ia.size())), cv::Exception)
- << "f(ia, " << ia.size() << ") should throw cv::Exception";
- }
- template<typename I, typename F>
- static void testB(I ia, F f, const char *mfname)
- {
- banner(ia, "f", mfname);
- EXPECT_THROW(f(ia, -1), cv::Exception)
- << "f(ia, " << -1 << ") should throw cv::Exception";
- for (int i = 0; i < int(ia.size()); i++)
- {
- EXPECT_NO_THROW(f(ia, i))
- << "f(ia, " << i << ") should not throw an exception";
- }
- EXPECT_THROW(f(ia, int(ia.size())), cv::Exception)
- << "f(ia, " << ia.size() << ") should throw cv::Exception";
- }
- static void test_isContinuous()
- {
- auto f = [](cv::_InputArray ia, int i) { (void)ia.isContinuous(i); };
- cv::Mat M;
- cv::UMat uM;
- std::vector<cv::Mat> vec = {M, M};
- std::array<cv::Mat, 2> arr = {M, M};
- std::vector<cv::UMat> uvec = {uM, uM};
- testA(vec, f, "isContinuous");
- testA(arr, f, "isContinuous");
- testA(uvec, f, "isContinuous");
- }
- static void test_isSubmatrix()
- {
- auto f = [](cv::_InputArray ia, int i) { (void)ia.isSubmatrix(i); };
- cv::Mat M;
- cv::UMat uM;
- std::vector<cv::Mat> vec = {M, M};
- std::array<cv::Mat, 2> arr = {M, M};
- std::vector<cv::UMat> uvec = {uM, uM};
- testA(vec, f, "isSubmatrix");
- testA(arr, f, "isSubmatrix");
- testA(uvec, f, "isSubmatrix");
- }
- static void test_offset()
- {
- auto f = [](cv::_InputArray ia, int i) { return ia.offset(i); };
- cv::Mat M;
- cv::UMat uM;
- cv::cuda::GpuMat gM;
- std::vector<cv::Mat> vec = {M, M};
- std::array<cv::Mat, 2> arr = {M, M};
- std::vector<cv::UMat> uvec = {uM, uM};
- std::vector<cv::cuda::GpuMat> gvec = {gM, gM};
- testB(vec, f, "offset");
- testB(arr, f, "offset");
- testB(uvec, f, "offset");
- testB(gvec, f, "offset");
- }
- static void test_step()
- {
- auto f = [](cv::_InputArray ia, int i) { return ia.step(i); };
- cv::Mat M;
- cv::UMat uM;
- cv::cuda::GpuMat gM;
- std::vector<cv::Mat> vec = {M, M};
- std::array<cv::Mat, 2> arr = {M, M};
- std::vector<cv::UMat> uvec = {uM, uM};
- std::vector<cv::cuda::GpuMat> gvec = {gM, gM};
- testB(vec, f, "step");
- testB(arr, f, "step");
- testB(uvec, f, "step");
- testB(gvec, f, "step");
- }
- public:
- static void run()
- {
- test_isContinuous();
- test_isSubmatrix();
- test_offset();
- test_step();
- }
- };
- TEST(Core_InputArray, range_checking)
- {
- TestInputArrayRangeChecking::run();
- }
- #endif
- TEST(Core_Vectors, issue_13078)
- {
- float floats_[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
- std::vector<float> floats(floats_, floats_ + 8);
- std::vector<int> ints(4);
- Mat m(4, 1, CV_32FC1, floats.data(), sizeof(floats[0]) * 2);
- m.convertTo(ints, CV_32S);
- ASSERT_EQ(1, ints[0]);
- ASSERT_EQ(3, ints[1]);
- ASSERT_EQ(5, ints[2]);
- ASSERT_EQ(7, ints[3]);
- }
- TEST(Core_Vectors, issue_13078_workaround)
- {
- float floats_[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
- std::vector<float> floats(floats_, floats_ + 8);
- std::vector<int> ints(4);
- Mat m(4, 1, CV_32FC1, floats.data(), sizeof(floats[0]) * 2);
- m.convertTo(Mat(ints), CV_32S);
- ASSERT_EQ(1, ints[0]);
- ASSERT_EQ(3, ints[1]);
- ASSERT_EQ(5, ints[2]);
- ASSERT_EQ(7, ints[3]);
- }
- TEST(Core_MatExpr, issue_13926)
- {
- Mat M1 = (Mat_<double>(4,4,CV_64FC1) << 1, 2, 3, 4,
- 5, 6, 7, 8,
- 9, 10, 11, 12,
- 13, 14, 15, 16);
- Matx44d M2(1, 2, 3, 4,
- 5, 6, 7, 8,
- 9, 10, 11, 12,
- 13, 14, 15, 16);
- EXPECT_GE(1e-6, cvtest::norm(M1*M2, M1*M1, NORM_INF)) << Mat(M1*M2) << std::endl << Mat(M1*M1);
- EXPECT_GE(1e-6, cvtest::norm(M2*M1, M2*M2, NORM_INF)) << Mat(M2*M1) << std::endl << Mat(M2*M2);
- }
- TEST(Core_MatExpr, issue_16655)
- {
- Mat a(Size(5, 5), CV_32FC3, Scalar::all(1));
- Mat b(Size(5, 5), CV_32FC3, Scalar::all(2));
- MatExpr ab_expr = a != b;
- Mat ab_mat = ab_expr;
- EXPECT_EQ(CV_8UC3, ab_expr.type())
- << "MatExpr: CV_8UC3 != " << typeToString(ab_expr.type());
- EXPECT_EQ(CV_8UC3, ab_mat.type())
- << "Mat: CV_8UC3 != " << typeToString(ab_mat.type());
- }
- TEST(Core_MatExpr, issue_16689)
- {
- Mat a(Size(10, 5), CV_32FC1, 5);
- Mat b(Size(10, 5), CV_32FC1, 2);
- Mat bt(Size(5, 10), CV_32FC1, 3);
- {
- MatExpr r = a * bt; // gemm
- EXPECT_EQ(Mat(r).size(), r.size()) << "[10x5] x [5x10] => [5x5]";
- }
- {
- MatExpr r = a * b.t(); // gemm
- EXPECT_EQ(Mat(r).size(), r.size()) << "[10x5] x [10x5].t() => [5x5]";
- }
- {
- MatExpr r = a.t() * b; // gemm
- EXPECT_EQ(Mat(r).size(), r.size()) << "[10x5].t() x [10x5] => [10x10]";
- }
- {
- MatExpr r = a.t() * bt.t(); // gemm
- EXPECT_EQ(Mat(r).size(), r.size()) << "[10x5].t() x [5x10].t() => [10x10]";
- }
- }
- #ifdef HAVE_EIGEN
- TEST(Core_Eigen, eigen2cv_check_Mat_type)
- {
- Mat A(4, 4, CV_32FC1, Scalar::all(0));
- Eigen::MatrixXf eigen_A;
- cv2eigen(A, eigen_A);
- Mat_<float> f_mat;
- EXPECT_NO_THROW(eigen2cv(eigen_A, f_mat));
- EXPECT_EQ(CV_32FC1, f_mat.type());
- Mat_<double> d_mat;
- EXPECT_ANY_THROW(eigen2cv(eigen_A, d_mat));
- //EXPECT_EQ(CV_64FC1, d_mat.type());
- }
- #endif // HAVE_EIGEN
- #ifdef OPENCV_EIGEN_TENSOR_SUPPORT
- TEST(Core_Eigen, cv2eigen_check_tensor_conversion)
- {
- Mat A(2, 3, CV_32FC3);
- float value = 0;
- for(int row=0; row<A.rows; row++)
- for(int col=0; col<A.cols; col++)
- for(int ch=0; ch<A.channels(); ch++)
- A.at<Vec3f>(row,col)[ch] = value++;
- Eigen::Tensor<float, 3, Eigen::RowMajor> row_tensor;
- cv2eigen(A, row_tensor);
- float* mat_ptr = (float*)A.data;
- float* tensor_ptr = row_tensor.data();
- for (int i=0; i< row_tensor.size(); i++)
- ASSERT_FLOAT_EQ(mat_ptr[i], tensor_ptr[i]);
- Eigen::Tensor<float, 3, Eigen::ColMajor> col_tensor;
- cv2eigen(A, col_tensor);
- value = 0;
- for(int row=0; row<A.rows; row++)
- for(int col=0; col<A.cols; col++)
- for(int ch=0; ch<A.channels(); ch++)
- ASSERT_FLOAT_EQ(value++, col_tensor(row,col,ch));
- }
- #endif // OPENCV_EIGEN_TENSOR_SUPPORT
- #ifdef OPENCV_EIGEN_TENSOR_SUPPORT
- TEST(Core_Eigen, eigen2cv_check_tensor_conversion)
- {
- Eigen::Tensor<float, 3, Eigen::RowMajor> row_tensor(2,3,3);
- Eigen::Tensor<float, 3, Eigen::ColMajor> col_tensor(2,3,3);
- float value = 0;
- for(int row=0; row<row_tensor.dimension(0); row++)
- for(int col=0; col<row_tensor.dimension(1); col++)
- for(int ch=0; ch<row_tensor.dimension(2); ch++)
- {
- row_tensor(row,col,ch) = value;
- col_tensor(row,col,ch) = value;
- value++;
- }
- Mat A;
- eigen2cv(row_tensor, A);
- float* tensor_ptr = row_tensor.data();
- float* mat_ptr = (float*)A.data;
- for (int i=0; i< row_tensor.size(); i++)
- ASSERT_FLOAT_EQ(tensor_ptr[i], mat_ptr[i]);
- Mat B;
- eigen2cv(col_tensor, B);
- value = 0;
- for(int row=0; row<B.rows; row++)
- for(int col=0; col<B.cols; col++)
- for(int ch=0; ch<B.channels(); ch++)
- ASSERT_FLOAT_EQ(value++, B.at<Vec3f>(row,col)[ch]);
- }
- #endif // OPENCV_EIGEN_TENSOR_SUPPORT
- #ifdef OPENCV_EIGEN_TENSOR_SUPPORT
- TEST(Core_Eigen, cv2eigen_tensormap_check_tensormap_access)
- {
- float arr[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
- Mat a_mat(2, 2, CV_32FC3, arr);
- Eigen::TensorMap<Eigen::Tensor<float, 3, Eigen::RowMajor>> a_tensor = cv2eigen_tensormap<float>(a_mat);
- for(int i=0; i<a_mat.rows; i++) {
- for (int j=0; j<a_mat.cols; j++) {
- for (int ch=0; ch<a_mat.channels(); ch++) {
- ASSERT_FLOAT_EQ(a_mat.at<Vec3f>(i,j)[ch], a_tensor(i,j,ch));
- ASSERT_EQ(&a_mat.at<Vec3f>(i,j)[ch], &a_tensor(i,j,ch));
- }
- }
- }
- }
- #endif // OPENCV_EIGEN_TENSOR_SUPPORT
- TEST(Mat, regression_12943) // memory usage: ~4.5 Gb
- {
- applyTestTag(CV_TEST_TAG_MEMORY_6GB);
- const int width = 0x8000;
- const int height = 0x10001;
- cv::Mat src(height, width, CV_8UC1, Scalar::all(128));
- cv::Mat dst;
- cv::flip(src, dst, 0);
- }
- TEST(Mat, empty_iterator_16855)
- {
- cv::Mat m;
- EXPECT_NO_THROW(m.begin<uchar>());
- EXPECT_NO_THROW(m.end<uchar>());
- EXPECT_TRUE(m.begin<uchar>() == m.end<uchar>());
- }
- TEST(Mat, regression_18473)
- {
- std::vector<int> sizes(3);
- sizes[0] = 20;
- sizes[1] = 50;
- sizes[2] = 100;
- #if 1 // with the fix
- std::vector<size_t> steps(2);
- steps[0] = 50*100*2;
- steps[1] = 100*2;
- #else // without the fix
- std::vector<size_t> steps(3);
- steps[0] = 50*100*2;
- steps[1] = 100*2;
- steps[2] = 2;
- #endif
- std::vector<short> data(20*50*100, 0); // 1Mb
- data[data.size() - 1] = 5;
- // param steps Array of ndims-1 steps
- Mat m(sizes, CV_16SC1, (void*)data.data(), (const size_t*)steps.data());
- ASSERT_FALSE(m.empty());
- EXPECT_EQ((int)5, (int)m.at<short>(19, 49, 99));
- }
- TEST(Mat, ptrVecni_20044)
- {
- Mat_<int> m(3,4); m << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12;
- Vec2i idx(1,1);
- uchar *u = m.ptr(idx);
- EXPECT_EQ(int(6), *(int*)(u));
- const uchar *cu = m.ptr(idx);
- EXPECT_EQ(int(6), *(int*)(cu));
- int *i = m.ptr<int>(idx);
- EXPECT_EQ(int(6), *(i));
- const int *ci = m.ptr<int>(idx);
- EXPECT_EQ(int(6), *(ci));
- }
- TEST(Mat, reverse_iterator_19967)
- {
- // empty iterator (#16855)
- cv::Mat m_empty;
- EXPECT_NO_THROW(m_empty.rbegin<uchar>());
- EXPECT_NO_THROW(m_empty.rend<uchar>());
- EXPECT_TRUE(m_empty.rbegin<uchar>() == m_empty.rend<uchar>());
- // 1D test
- std::vector<uchar> data{0, 1, 2, 3};
- const std::vector<int> sizes_1d{4};
- //Base class
- cv::Mat m_1d(sizes_1d, CV_8U, data.data());
- auto mismatch_it_pair_1d = std::mismatch(data.rbegin(), data.rend(), m_1d.rbegin<uchar>());
- EXPECT_EQ(mismatch_it_pair_1d.first, data.rend()); // expect no mismatch
- EXPECT_EQ(mismatch_it_pair_1d.second, m_1d.rend<uchar>());
- //Templated derived class
- cv::Mat_<uchar> m_1d_t(static_cast<int>(sizes_1d.size()), sizes_1d.data(), data.data());
- auto mismatch_it_pair_1d_t = std::mismatch(data.rbegin(), data.rend(), m_1d_t.rbegin());
- EXPECT_EQ(mismatch_it_pair_1d_t.first, data.rend()); // expect no mismatch
- EXPECT_EQ(mismatch_it_pair_1d_t.second, m_1d_t.rend());
- // 2D test
- const std::vector<int> sizes_2d{2, 2};
- //Base class
- cv::Mat m_2d(sizes_2d, CV_8U, data.data());
- auto mismatch_it_pair_2d = std::mismatch(data.rbegin(), data.rend(), m_2d.rbegin<uchar>());
- EXPECT_EQ(mismatch_it_pair_2d.first, data.rend());
- EXPECT_EQ(mismatch_it_pair_2d.second, m_2d.rend<uchar>());
- //Templated derived class
- cv::Mat_<uchar> m_2d_t(static_cast<int>(sizes_2d.size()),sizes_2d.data(), data.data());
- auto mismatch_it_pair_2d_t = std::mismatch(data.rbegin(), data.rend(), m_2d_t.rbegin());
- EXPECT_EQ(mismatch_it_pair_2d_t.first, data.rend());
- EXPECT_EQ(mismatch_it_pair_2d_t.second, m_2d_t.rend());
- // 3D test
- std::vector<uchar> data_3d{0, 1, 2, 3, 4, 5, 6, 7};
- const std::vector<int> sizes_3d{2, 2, 2};
- //Base class
- cv::Mat m_3d(sizes_3d, CV_8U, data_3d.data());
- auto mismatch_it_pair_3d = std::mismatch(data_3d.rbegin(), data_3d.rend(), m_3d.rbegin<uchar>());
- EXPECT_EQ(mismatch_it_pair_3d.first, data_3d.rend());
- EXPECT_EQ(mismatch_it_pair_3d.second, m_3d.rend<uchar>());
- //Templated derived class
- cv::Mat_<uchar> m_3d_t(static_cast<int>(sizes_3d.size()),sizes_3d.data(), data_3d.data());
- auto mismatch_it_pair_3d_t = std::mismatch(data_3d.rbegin(), data_3d.rend(), m_3d_t.rbegin());
- EXPECT_EQ(mismatch_it_pair_3d_t.first, data_3d.rend());
- EXPECT_EQ(mismatch_it_pair_3d_t.second, m_3d_t.rend());
- // const test base class
- const cv::Mat m_1d_const(sizes_1d, CV_8U, data.data());
- auto mismatch_it_pair_1d_const = std::mismatch(data.rbegin(), data.rend(), m_1d_const.rbegin<uchar>());
- EXPECT_EQ(mismatch_it_pair_1d_const.first, data.rend()); // expect no mismatch
- EXPECT_EQ(mismatch_it_pair_1d_const.second, m_1d_const.rend<uchar>());
- EXPECT_FALSE((std::is_assignable<decltype(m_1d_const.rend<uchar>()), uchar>::value)) << "Constness of const iterator violated.";
- EXPECT_FALSE((std::is_assignable<decltype(m_1d_const.rbegin<uchar>()), uchar>::value)) << "Constness of const iterator violated.";
- // const test templated dervied class
- const cv::Mat_<uchar> m_1d_const_t(static_cast<int>(sizes_1d.size()), sizes_1d.data(), data.data());
- auto mismatch_it_pair_1d_const_t = std::mismatch(data.rbegin(), data.rend(), m_1d_const_t.rbegin());
- EXPECT_EQ(mismatch_it_pair_1d_const_t.first, data.rend()); // expect no mismatch
- EXPECT_EQ(mismatch_it_pair_1d_const_t.second, m_1d_const_t.rend());
- EXPECT_FALSE((std::is_assignable<decltype(m_1d_const_t.rend()), uchar>::value)) << "Constness of const iterator violated.";
- EXPECT_FALSE((std::is_assignable<decltype(m_1d_const_t.rbegin()), uchar>::value)) << "Constness of const iterator violated.";
- }
- }} // namespace
|