test_conjugate_gradient.cpp 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108
  1. /*M///////////////////////////////////////////////////////////////////////////////////////
  2. //
  3. // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
  4. //
  5. // By downloading, copying, installing or using the software you agree to this license.
  6. // If you do not agree to this license, do not download, install,
  7. // copy or use the software.
  8. //
  9. //
  10. // License Agreement
  11. // For Open Source Computer Vision Library
  12. //
  13. // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
  14. // Third party copyrights are property of their respective owners.
  15. //
  16. // Redistribution and use in source and binary forms, with or without modification,
  17. // are permitted provided that the following conditions are met:
  18. //
  19. // * Redistribution's of source code must retain the above copyright notice,
  20. // this list of conditions and the following disclaimer.
  21. //
  22. // * Redistribution's in binary form must reproduce the above copyright notice,
  23. // this list of conditions and the following disclaimer in the documentation
  24. // and/or other materials provided with the distribution.
  25. //
  26. // * The name of the copyright holders may not be used to endorse or promote products
  27. // derived from this software without specific prior written permission.
  28. //
  29. // This software is provided by the copyright holders and contributors "as is" and
  30. // any express or implied warranties, including, but not limited to, the implied
  31. // warranties of merchantability and fitness for a particular purpose are disclaimed.
  32. // In no event shall the OpenCV Foundation or contributors be liable for any direct,
  33. // indirect, incidental, special, exemplary, or consequential damages
  34. // (including, but not limited to, procurement of substitute goods or services;
  35. // loss of use, data, or profits; or business interruption) however caused
  36. // and on any theory of liability, whether in contract, strict liability,
  37. // or tort (including negligence or otherwise) arising in any way out of
  38. // the use of this software, even if advised of the possibility of such damage.
  39. //
  40. //M*/
  41. #include "test_precomp.hpp"
  42. namespace opencv_test { namespace {
  43. static void mytest(cv::Ptr<cv::ConjGradSolver> solver,cv::Ptr<cv::MinProblemSolver::Function> ptr_F,cv::Mat& x,
  44. cv::Mat& etalon_x,double etalon_res){
  45. solver->setFunction(ptr_F);
  46. //int ndim=MAX(step.cols,step.rows);
  47. double res=solver->minimize(x);
  48. std::cout<<"res:\n\t"<<res<<std::endl;
  49. std::cout<<"x:\n\t"<<x<<std::endl;
  50. std::cout<<"etalon_res:\n\t"<<etalon_res<<std::endl;
  51. std::cout<<"etalon_x:\n\t"<<etalon_x<<std::endl;
  52. double tol = 1e-2;
  53. ASSERT_TRUE(std::abs(res-etalon_res)<tol);
  54. /*for(cv::Mat_<double>::iterator it1=x.begin<double>(),it2=etalon_x.begin<double>();it1!=x.end<double>();it1++,it2++){
  55. ASSERT_TRUE(std::abs((*it1)-(*it2))<tol);
  56. }*/
  57. std::cout<<"--------------------------\n";
  58. }
  59. class SphereF_CG:public cv::MinProblemSolver::Function{
  60. public:
  61. int getDims() const { return 4; }
  62. double calc(const double* x)const{
  63. return x[0]*x[0]+x[1]*x[1]+x[2]*x[2]+x[3]*x[3];
  64. }
  65. // use automatically computed gradient
  66. /*void getGradient(const double* x,double* grad){
  67. for(int i=0;i<4;i++){
  68. grad[i]=2*x[i];
  69. }
  70. }*/
  71. };
  72. class RosenbrockF_CG:public cv::MinProblemSolver::Function{
  73. int getDims() const { return 2; }
  74. double calc(const double* x)const{
  75. return 100*(x[1]-x[0]*x[0])*(x[1]-x[0]*x[0])+(1-x[0])*(1-x[0]);
  76. }
  77. void getGradient(const double* x,double* grad){
  78. grad[0]=-2*(1-x[0])-400*(x[1]-x[0]*x[0])*x[0];
  79. grad[1]=200*(x[1]-x[0]*x[0]);
  80. }
  81. };
  82. TEST(Core_ConjGradSolver, regression_basic){
  83. cv::Ptr<cv::ConjGradSolver> solver=cv::ConjGradSolver::create();
  84. #if 1
  85. {
  86. cv::Ptr<cv::MinProblemSolver::Function> ptr_F(new SphereF_CG());
  87. cv::Mat x=(cv::Mat_<double>(4,1)<<50.0,10.0,1.0,-10.0),
  88. etalon_x=(cv::Mat_<double>(1,4)<<0.0,0.0,0.0,0.0);
  89. double etalon_res=0.0;
  90. mytest(solver,ptr_F,x,etalon_x,etalon_res);
  91. }
  92. #endif
  93. #if 1
  94. {
  95. cv::Ptr<cv::MinProblemSolver::Function> ptr_F(new RosenbrockF_CG());
  96. cv::Mat x=(cv::Mat_<double>(2,1)<<0.0,0.0),
  97. etalon_x=(cv::Mat_<double>(2,1)<<1.0,1.0);
  98. double etalon_res=0.0;
  99. mytest(solver,ptr_F,x,etalon_x,etalon_res);
  100. }
  101. #endif
  102. }
  103. }} // namespace