123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- #include "perf_precomp.hpp"
- namespace opencv_test
- {
- using namespace perf;
- namespace {
- typedef perf::TestBaseWithParam<size_t> VectorLength;
- PERF_TEST_P(VectorLength, phase32f, testing::Values(128, 1000, 128*1024, 512*1024, 1024*1024))
- {
- size_t length = GetParam();
- vector<float> X(length);
- vector<float> Y(length);
- vector<float> angle(length);
- declare.in(X, Y, WARMUP_RNG).out(angle);
- TEST_CYCLE_N(200) cv::phase(X, Y, angle, true);
- SANITY_CHECK(angle, 5e-5);
- }
- PERF_TEST_P(VectorLength, phase64f, testing::Values(128, 1000, 128*1024, 512*1024, 1024*1024))
- {
- size_t length = GetParam();
- vector<double> X(length);
- vector<double> Y(length);
- vector<double> angle(length);
- declare.in(X, Y, WARMUP_RNG).out(angle);
- TEST_CYCLE_N(200) cv::phase(X, Y, angle, true);
- SANITY_CHECK(angle, 5e-5);
- }
- typedef perf::TestBaseWithParam< testing::tuple<int, int, int> > KMeans;
- PERF_TEST_P_(KMeans, single_iter)
- {
- RNG& rng = theRNG();
- const int K = testing::get<0>(GetParam());
- const int dims = testing::get<1>(GetParam());
- const int N = testing::get<2>(GetParam());
- const int attempts = 5;
- Mat data(N, dims, CV_32F);
- rng.fill(data, RNG::UNIFORM, -0.1, 0.1);
- const int N0 = K;
- Mat data0(N0, dims, CV_32F);
- rng.fill(data0, RNG::UNIFORM, -1, 1);
- for (int i = 0; i < N; i++)
- {
- int base = rng.uniform(0, N0);
- cv::add(data0.row(base), data.row(i), data.row(i));
- }
- declare.in(data);
- Mat labels, centers;
- TEST_CYCLE()
- {
- kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 1, 0),
- attempts, KMEANS_PP_CENTERS, centers);
- }
- SANITY_CHECK_NOTHING();
- }
- PERF_TEST_P_(KMeans, good)
- {
- RNG& rng = theRNG();
- const int K = testing::get<0>(GetParam());
- const int dims = testing::get<1>(GetParam());
- const int N = testing::get<2>(GetParam());
- const int attempts = 5;
- Mat data(N, dims, CV_32F);
- rng.fill(data, RNG::UNIFORM, -0.1, 0.1);
- const int N0 = K;
- Mat data0(N0, dims, CV_32F);
- rng.fill(data0, RNG::UNIFORM, -1, 1);
- for (int i = 0; i < N; i++)
- {
- int base = rng.uniform(0, N0);
- cv::add(data0.row(base), data.row(i), data.row(i));
- }
- declare.in(data);
- Mat labels, centers;
- TEST_CYCLE()
- {
- kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 0),
- attempts, KMEANS_PP_CENTERS, centers);
- }
- SANITY_CHECK_NOTHING();
- }
- PERF_TEST_P_(KMeans, with_duplicates)
- {
- RNG& rng = theRNG();
- const int K = testing::get<0>(GetParam());
- const int dims = testing::get<1>(GetParam());
- const int N = testing::get<2>(GetParam());
- const int attempts = 5;
- Mat data(N, dims, CV_32F, Scalar::all(0));
- const int N0 = std::max(2, K * 2 / 3);
- Mat data0(N0, dims, CV_32F);
- rng.fill(data0, RNG::UNIFORM, -1, 1);
- for (int i = 0; i < N; i++)
- {
- int base = rng.uniform(0, N0);
- data0.row(base).copyTo(data.row(i));
- }
- declare.in(data);
- Mat labels, centers;
- TEST_CYCLE()
- {
- kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 0),
- attempts, KMEANS_PP_CENTERS, centers);
- }
- SANITY_CHECK_NOTHING();
- }
- INSTANTIATE_TEST_CASE_P(/*nothing*/ , KMeans,
- testing::Values(
- // K clusters, dims, N points
- testing::make_tuple(2, 3, 100000),
- testing::make_tuple(4, 3, 500),
- testing::make_tuple(4, 3, 1000),
- testing::make_tuple(4, 3, 10000),
- testing::make_tuple(8, 3, 1000),
- testing::make_tuple(8, 16, 1000),
- testing::make_tuple(8, 64, 1000),
- testing::make_tuple(16, 16, 1000),
- testing::make_tuple(16, 32, 1000),
- testing::make_tuple(32, 16, 1000),
- testing::make_tuple(32, 32, 1000),
- testing::make_tuple(100, 2, 1000)
- )
- );
- }
- } // namespace
|