123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- enum TestSolver { Homogr, Fundam, Essen, PnP, Affine};
- /*
- * rng -- reference to random generator
- * pts1 -- 2xN image points
- * pts2 -- for PnP is 3xN object points, otherwise 2xN image points.
- * two_calib -- True if two cameras have different calibration.
- * K1 -- intrinsic matrix of the first camera. For PnP only one camera.
- * K2 -- only if two_calib is True.
- * pts_size -- required size of points.
- * inlier_ratio -- required inlier ratio
- * noise_std -- standard deviation of Gaussian noise of image points.
- * gt_inliers -- has size of number of inliers. Contains indices of inliers.
- */
- static int generatePoints (cv::RNG &rng, cv::Mat &pts1, cv::Mat &pts2, cv::Mat &K1, cv::Mat &K2,
- bool two_calib, int pts_size, TestSolver test_case, double inlier_ratio, double noise_std,
- std::vector<int> >_inliers) {
- auto eulerAnglesToRotationMatrix = [] (double pitch, double yaw, double roll) {
- // Calculate rotation about x axis
- cv::Matx33d R_x (1, 0, 0, 0, cos(roll), -sin(roll), 0, sin(roll), cos(roll));
- // Calculate rotation about y axis
- cv::Matx33d R_y (cos(pitch), 0, sin(pitch), 0, 1, 0, -sin(pitch), 0, cos(pitch));
- // Calculate rotation about z axis
- cv::Matx33d R_z (cos(yaw), -sin(yaw), 0, sin(yaw), cos(yaw), 0, 0, 0, 1);
- return cv::Mat(R_z * R_y * R_x); // Combined rotation matrix
- };
- const double pitch_min = -CV_PI / 6, pitch_max = CV_PI / 6; // 30 degrees
- const double yaw_min = -CV_PI / 6, yaw_max = CV_PI / 6;
- const double roll_min = -CV_PI / 6, roll_max = CV_PI / 6;
- cv::Mat R = eulerAnglesToRotationMatrix(rng.uniform(pitch_min, pitch_max),
- rng.uniform(yaw_min, yaw_max), rng.uniform(roll_min, roll_max));
- // generate random translation,
- // if test for homography fails try to fix translation to zero vec so H is related by transl.
- cv::Vec3d t (rng.uniform(-0.5f, 0.5f), rng.uniform(-0.5f, 0.5f), rng.uniform(1.0f, 2.0f));
- // generate random calibration
- auto getRandomCalib = [&] () {
- return cv::Mat(cv::Matx33d(rng.uniform(100.0, 1000.0), 0, rng.uniform(100.0, 100.0),
- 0, rng.uniform(100.0, 1000.0), rng.uniform(-100.0, 100.0),
- 0, 0, 1.));
- };
- K1 = getRandomCalib();
- K2 = two_calib ? getRandomCalib() : K1.clone();
- auto updateTranslation = [] (const cv::Mat &pts, const cv::Mat &R_, cv::Vec3d &t_) {
- // Make sure the shape is in front of the camera
- cv::Mat points3d_transformed = R_ * pts + t_ * cv::Mat::ones(1, pts.cols, pts.type());
- double min_dist, max_dist;
- cv::minMaxIdx(points3d_transformed.row(2), &min_dist, &max_dist);
- if (min_dist < 0) t_(2) -= min_dist + 1.0;
- };
- // compute size of inliers and outliers
- const int inl_size = static_cast<int>(inlier_ratio * pts_size);
- const int out_size = pts_size - inl_size;
- // all points will have top 'inl_size' of their points inliers
- gt_inliers.clear(); gt_inliers.reserve(inl_size);
- for (int i = 0; i < inl_size; i++)
- gt_inliers.emplace_back(i);
- // double precision to multiply points by models
- const int pts_type = CV_64F;
- cv::Mat points3d;
- if (test_case == TestSolver::Homogr) {
- points3d.create(2, inl_size, pts_type);
- rng.fill(points3d, cv::RNG::UNIFORM, 0.0, 1.0); // keep small range
- // inliers must be planar points, let their 3D coordinate be 1
- cv::vconcat(points3d, cv::Mat::ones(1, inl_size, points3d.type()), points3d);
- } else if (test_case == TestSolver::Fundam || test_case == TestSolver::Essen) {
- // create 3D points which are inliers
- points3d.create(3, inl_size, pts_type);
- rng.fill(points3d, cv::RNG::UNIFORM, 0.0, 1.0);
- } else if (test_case == TestSolver::PnP) {
- //pts1 are image points, pts2 are object points
- pts2.create(3, inl_size, pts_type); // 3D inliers
- rng.fill(pts2, cv::RNG::UNIFORM, 0, 1);
- updateTranslation(pts2, R, t);
- // project 3D points (pts2) on image plane (pts1)
- pts1 = K1 * (R * pts2 + t * cv::Mat::ones(1, pts2.cols, pts2.type()));
- cv::divide(pts1.row(0), pts1.row(2), pts1.row(0));
- cv::divide(pts1.row(1), pts1.row(2), pts1.row(1));
- // make 2D points
- pts1 = pts1.rowRange(0, 2);
- // create random outliers
- cv::Mat pts_outliers = cv::Mat(5, out_size, pts2.type());
- rng.fill(pts_outliers, cv::RNG::UNIFORM, 0, 1000);
- // merge inliers with random image points = outliers
- cv::hconcat(pts1, pts_outliers.rowRange(0, 2), pts1);
- // merge 3D inliers with 3D outliers
- cv::hconcat(pts2, pts_outliers.rowRange(2, 5), pts2);
- // add Gaussian noise to image points
- cv::Mat noise(pts1.rows, pts1.cols, pts1.type());
- rng.fill(noise, cv::RNG::NORMAL, 0, noise_std);
- pts1 += noise;
- return inl_size;
- } else if (test_case == TestSolver::Affine) {
- } else
- CV_Error(cv::Error::StsBadArg, "Unknown solver!");
- if (test_case != TestSolver::PnP) {
- // project 3D point on image plane
- // use two relative scenes. The first camera is P1 = K1 [I | 0], the second P2 = K2 [R | t]
- if (test_case != TestSolver::Affine) {
- updateTranslation(points3d, R, t);
- pts1 = K1 * points3d;
- pts2 = K2 * (R * points3d + t * cv::Mat::ones(1, points3d.cols, points3d.type()));
- // normalize by 3 coordinate
- cv::divide(pts1.row(0), pts1.row(2), pts1.row(0));
- cv::divide(pts1.row(1), pts1.row(2), pts1.row(1));
- cv::divide(pts2.row(0), pts2.row(2), pts2.row(0));
- cv::divide(pts2.row(1), pts2.row(2), pts2.row(1));
- } else {
- pts1 = cv::Mat(2, inl_size, pts_type);
- rng.fill(pts1, cv::RNG::UNIFORM, 0, 1000);
- cv::Matx33d sc(rng.uniform(1., 5.),0,0,rng.uniform(1., 4.),0,0, 0, 0, 1);
- cv::Matx33d tr(1,0,rng.uniform(50., 500.),0,1,rng.uniform(50., 500.), 0, 0, 1);
- const double phi = rng.uniform(0., CV_PI);
- cv::Matx33d rot(cos(phi), -sin(phi),0, sin(phi), cos(phi),0, 0, 0, 1);
- cv::Matx33d A = sc * tr * rot;
- cv::vconcat(pts1, cv::Mat::ones(1, pts1.cols, pts1.type()), points3d);
- pts2 = A * points3d;
- }
- // get 2D points
- pts1 = pts1.rowRange(0,2); pts2 = pts2.rowRange(0,2);
- // generate random outliers as 2D image points
- cv::Mat pts1_outliers(pts1.rows, out_size, pts1.type()),
- pts2_outliers(pts2.rows, out_size, pts2.type());
- rng.fill(pts1_outliers, cv::RNG::UNIFORM, 0, 1000);
- rng.fill(pts2_outliers, cv::RNG::UNIFORM, 0, 1000);
- // merge inliers and outliers
- cv::hconcat(pts1, pts1_outliers, pts1);
- cv::hconcat(pts2, pts2_outliers, pts2);
- // add normal / Gaussian noise to image points
- cv::Mat noise1 (pts1.rows, pts1.cols, pts1.type()), noise2 (pts2.rows, pts2.cols, pts2.type());
- rng.fill(noise1, cv::RNG::NORMAL, 0, noise_std); pts1 += noise1;
- rng.fill(noise2, cv::RNG::NORMAL, 0, noise_std); pts2 += noise2;
- }
- return inl_size;
- }
- /*
- * for test case = 0, 1, 2 (homography and epipolar geometry): pts1 and pts2 are 3xN
- * for test_case = 3 (PnP): pts1 are 3xN and pts2 are 4xN
- * all points are of the same type as model
- */
- static double getError (TestSolver test_case, int pt_idx, const cv::Mat &pts1, const cv::Mat &pts2, const cv::Mat &model) {
- cv::Mat pt1 = pts1.col(pt_idx), pt2 = pts2.col(pt_idx);
- if (test_case == TestSolver::Homogr) { // reprojection error
- // compute Euclidean distance between given and reprojected points
- cv::Mat est_pt2 = model * pt1; est_pt2 /= est_pt2.at<double>(2);
- if (false) {
- cv::Mat est_pt1 = model.inv() * pt2; est_pt1 /= est_pt1.at<double>(2);
- return (cv::norm(est_pt1 - pt1) + cv::norm(est_pt2 - pt2)) / 2;
- }
- return cv::norm(est_pt2 - pt2);
- } else
- if (test_case == TestSolver::Fundam || test_case == TestSolver::Essen) {
- cv::Mat l2 = model * pt1;
- cv::Mat l1 = model.t() * pt2;
- if (test_case == TestSolver::Fundam) // sampson error
- return fabs(pt2.dot(l2)) / sqrt(pow(l1.at<double>(0), 2) + pow(l1.at<double>(1), 2) +
- pow(l2.at<double>(0), 2) + pow(l2.at<double>(1), 2));
- else // symmetric geometric distance
- return sqrt(pow(pt1.dot(l1),2) / (pow(l1.at<double>(0),2) + pow(l1.at<double>(1),2)) +
- pow(pt2.dot(l2),2) / (pow(l2.at<double>(0),2) + pow(l2.at<double>(1),2)));
- } else
- if (test_case == TestSolver::PnP) { // PnP, reprojection error
- cv::Mat img_pt = model * pt2; img_pt /= img_pt.at<double>(2);
- return cv::norm(pt1 - img_pt);
- } else
- CV_Error(cv::Error::StsBadArg, "Undefined test case!");
- }
- /*
- * inl_size -- number of ground truth inliers
- * pts1 and pts2 are of the same size as from function generatePoints(...)
- */
- static void checkInliersMask (TestSolver test_case, int inl_size, double thr, const cv::Mat &pts1_,
- const cv::Mat &pts2_, const cv::Mat &model, const cv::Mat &mask) {
- ASSERT_TRUE(!model.empty() && !mask.empty());
- cv::Mat pts1 = pts1_, pts2 = pts2_;
- if (pts1.type() != model.type()) {
- pts1.convertTo(pts1, model.type());
- pts2.convertTo(pts2, model.type());
- }
- // convert to homogeneous
- cv::vconcat(pts1, cv::Mat::ones(1, pts1.cols, pts1.type()), pts1);
- cv::vconcat(pts2, cv::Mat::ones(1, pts2.cols, pts2.type()), pts2);
- thr *= 1.001; // increase a little threshold due to numerical imprecisions
- const auto * const mask_ptr = mask.ptr<uchar>();
- int num_found_inliers = 0;
- for (int i = 0; i < pts1.cols; i++)
- if (mask_ptr[i]) {
- ASSERT_LT(getError(test_case, i, pts1, pts2, model), thr);
- num_found_inliers++;
- }
- // check if RANSAC found at least 80% of inliers
- ASSERT_GT(num_found_inliers, 0.8 * inl_size);
- }
- TEST(usac_Homography, accuracy) {
- std::vector<int> gt_inliers;
- const int pts_size = 1500;
- cv::RNG &rng = cv::theRNG();
- // do not test USAC_PARALLEL, because it is not deterministic
- const std::vector<int> flags = {USAC_DEFAULT, USAC_ACCURATE, USAC_PROSAC, USAC_FAST, USAC_MAGSAC};
- for (double inl_ratio = 0.1; inl_ratio < 0.91; inl_ratio += 0.1) {
- cv::Mat pts1, pts2, K1, K2;
- int inl_size = generatePoints(rng, pts1, pts2, K1, K2, false /*two calib*/,
- pts_size, TestSolver ::Homogr, inl_ratio/*inl ratio*/, 0.1 /*noise std*/, gt_inliers);
- // compute max_iters with standard upper bound rule for RANSAC with 1.5x tolerance
- const double conf = 0.99, thr = 2., max_iters = 1.3 * log(1 - conf) /
- log(1 - pow(inl_ratio, 4 /* sample size */));
- for (auto flag : flags) {
- cv::Mat mask, H = cv::findHomography(pts1, pts2,flag, thr, mask,
- int(max_iters), conf);
- checkInliersMask(TestSolver::Homogr, inl_size, thr, pts1, pts2, H, mask);
- }
- }
- }
- TEST(usac_Fundamental, accuracy) {
- std::vector<int> gt_inliers;
- const int pts_size = 2000;
- cv::RNG &rng = cv::theRNG();
- // start from 25% otherwise max_iters will be too big
- const std::vector<int> flags = {USAC_DEFAULT, USAC_FM_8PTS, USAC_ACCURATE, USAC_PROSAC, USAC_FAST, USAC_MAGSAC};
- const double conf = 0.99, thr = 1.;
- for (double inl_ratio = 0.25; inl_ratio < 0.91; inl_ratio += 0.1) {
- cv::Mat pts1, pts2, K1, K2;
- int inl_size = generatePoints(rng, pts1, pts2, K1, K2, false /*two calib*/,
- pts_size, TestSolver ::Fundam, inl_ratio, 0.1 /*noise std*/, gt_inliers);
- for (auto flag : flags) {
- const int sample_size = flag == USAC_FM_8PTS ? 8 : 7;
- const double max_iters = 1.25 * log(1 - conf) /
- log(1 - pow(inl_ratio, sample_size));
- cv::Mat mask, F = cv::findFundamentalMat(pts1, pts2,flag, thr, conf,
- int(max_iters), mask);
- checkInliersMask(TestSolver::Fundam, inl_size, thr, pts1, pts2, F, mask);
- }
- }
- }
- TEST(usac_Fundamental, regression_19639)
- {
- double x_[] = {
- 941, 890,
- 596, 940,
- 898, 941,
- 894, 933,
- 586, 938,
- 902, 933,
- 887, 935
- };
- Mat x(7, 1, CV_64FC2, x_);
- double y_[] = {
- 1416, 806,
- 1157, 852,
- 1380, 855,
- 1378, 843,
- 1145, 849,
- 1378, 843,
- 1378, 843
- };
- Mat y(7, 1, CV_64FC2, y_);
- //std::cout << x << std::endl;
- //std::cout << y << std::endl;
- Mat m = cv::findFundamentalMat(x, y, USAC_MAGSAC, 3, 0.99);
- EXPECT_TRUE(m.empty());
- }
- TEST(usac_Essential, accuracy) {
- std::vector<int> gt_inliers;
- const int pts_size = 1500;
- cv::RNG &rng = cv::theRNG();
- // findEssentilaMat has by default number of maximum iterations equal to 1000.
- // It means that with 99% confidence we assume at least 34.08% of inliers
- const std::vector<int> flags = {USAC_DEFAULT, USAC_ACCURATE, USAC_PROSAC, USAC_FAST, USAC_MAGSAC};
- for (double inl_ratio = 0.35; inl_ratio < 0.91; inl_ratio += 0.1) {
- cv::Mat pts1, pts2, K1, K2;
- int inl_size = generatePoints(rng, pts1, pts2, K1, K2, false /*two calib*/,
- pts_size, TestSolver ::Fundam, inl_ratio, 0.01 /*noise std, works bad with high noise*/, gt_inliers);
- const double conf = 0.99, thr = 1.;
- for (auto flag : flags) {
- cv::Mat mask, E;
- try {
- E = cv::findEssentialMat(pts1, pts2, K1, flag, conf, thr, mask);
- } catch (cv::Exception &e) {
- if (e.code != cv::Error::StsNotImplemented)
- FAIL() << "Essential matrix estimation failed!\n";
- else continue;
- }
- // calibrate points
- cv::Mat cpts1_3d, cpts2_3d;
- cv::vconcat(pts1, cv::Mat::ones(1, pts1.cols, pts1.type()), cpts1_3d);
- cv::vconcat(pts2, cv::Mat::ones(1, pts2.cols, pts2.type()), cpts2_3d);
- cpts1_3d = K1.inv() * cpts1_3d; cpts2_3d = K1.inv() * cpts2_3d;
- checkInliersMask(TestSolver::Essen, inl_size, thr / ((K1.at<double>(0,0) + K1.at<double>(1,1)) / 2),
- cpts1_3d.rowRange(0,2), cpts2_3d.rowRange(0,2), E, mask);
- }
- }
- }
- TEST(usac_P3P, accuracy) {
- std::vector<int> gt_inliers;
- const int pts_size = 3000;
- cv::Mat img_pts, obj_pts, K1, K2;
- cv::RNG &rng = cv::theRNG();
- const std::vector<int> flags = {USAC_DEFAULT, USAC_ACCURATE, USAC_PROSAC, USAC_FAST, USAC_MAGSAC};
- for (double inl_ratio = 0.1; inl_ratio < 0.91; inl_ratio += 0.1) {
- int inl_size = generatePoints(rng, img_pts, obj_pts, K1, K2, false /*two calib*/,
- pts_size, TestSolver ::PnP, inl_ratio, 0.15 /*noise std*/, gt_inliers);
- const double conf = 0.99, thr = 2., max_iters = 1.3 * log(1 - conf) /
- log(1 - pow(inl_ratio, 3 /* sample size */));
- for (auto flag : flags) {
- std::vector<int> inliers;
- cv::Mat rvec, tvec, mask, R, P;
- CV_Assert(cv::solvePnPRansac(obj_pts, img_pts, K1, cv::noArray(), rvec, tvec,
- false, (int)max_iters, (float)thr, conf, inliers, flag));
- cv::Rodrigues(rvec, R);
- cv::hconcat(K1 * R, K1 * tvec, P);
- mask.create(pts_size, 1, CV_8U);
- mask.setTo(Scalar::all(0));
- for (auto inl : inliers)
- mask.at<uchar>(inl) = true;
- checkInliersMask(TestSolver ::PnP, inl_size, thr, img_pts, obj_pts, P, mask);
- }
- }
- }
- TEST (usac_Affine2D, accuracy) {
- std::vector<int> gt_inliers;
- const int pts_size = 2000;
- cv::Mat pts1, pts2, K1, K2;
- cv::RNG &rng = cv::theRNG();
- const std::vector<int> flags = {USAC_DEFAULT, USAC_ACCURATE, USAC_PROSAC, USAC_FAST, USAC_MAGSAC};
- for (double inl_ratio = 0.1; inl_ratio < 0.91; inl_ratio += 0.1) {
- int inl_size = generatePoints(rng, pts1, pts2, K1, K2, false /*two calib*/,
- pts_size, TestSolver ::Affine, inl_ratio, 0.15 /*noise std*/, gt_inliers);
- const double conf = 0.99, thr = 2., max_iters = 1.3 * log(1 - conf) /
- log(1 - pow(inl_ratio, 3 /* sample size */));
- for (auto flag : flags) {
- cv::Mat mask, A = cv::estimateAffine2D(pts1, pts2, mask, flag, thr, (size_t)max_iters, conf, 0);
- cv::vconcat(A, cv::Mat(cv::Matx13d(0,0,1)), A);
- checkInliersMask(TestSolver::Homogr /*use homography error*/, inl_size, thr, pts1, pts2, A, mask);
- }
- }
- }
- TEST(usac_testUsacParams, accuracy) {
- std::vector<int> gt_inliers;
- const int pts_size = 1500;
- cv::RNG &rng = cv::theRNG();
- const cv::UsacParams usac_params = cv::UsacParams();
- cv::Mat pts1, pts2, K1, K2, mask, model, rvec, tvec, R;
- int inl_size;
- auto getInlierRatio = [] (int max_iters, int sample_size, double conf) {
- return std::pow(1 - exp(log(1 - conf)/(double)max_iters), 1 / (double)sample_size);
- };
- cv::Vec4d dist_coeff (0, 0, 0, 0); // test with 0 distortion
- // Homography matrix
- inl_size = generatePoints(rng, pts1, pts2, K1, K2, false, pts_size, TestSolver::Homogr,
- getInlierRatio(usac_params.maxIterations, 4, usac_params.confidence), 0.1, gt_inliers);
- model = cv::findHomography(pts1, pts2, mask, usac_params);
- checkInliersMask(TestSolver::Homogr, inl_size, usac_params.threshold, pts1, pts2, model, mask);
- // Fundamental matrix
- inl_size = generatePoints(rng, pts1, pts2, K1, K2, false, pts_size, TestSolver::Fundam,
- getInlierRatio(usac_params.maxIterations, 7, usac_params.confidence), 0.1, gt_inliers);
- model = cv::findFundamentalMat(pts1, pts2, mask, usac_params);
- checkInliersMask(TestSolver::Fundam, inl_size, usac_params.threshold, pts1, pts2, model, mask);
- // Essential matrix
- inl_size = generatePoints(rng, pts1, pts2, K1, K2, true, pts_size, TestSolver::Essen,
- getInlierRatio(usac_params.maxIterations, 5, usac_params.confidence), 0.01, gt_inliers);
- try {
- model = cv::findEssentialMat(pts1, pts2, K1, K2, dist_coeff, dist_coeff, mask, usac_params);
- cv::Mat cpts1_3d, cpts2_3d;
- cv::vconcat(pts1, cv::Mat::ones(1, pts1.cols, pts1.type()), cpts1_3d);
- cv::vconcat(pts2, cv::Mat::ones(1, pts2.cols, pts2.type()), cpts2_3d);
- cpts1_3d = K1.inv() * cpts1_3d; cpts2_3d = K2.inv() * cpts2_3d;
- checkInliersMask(TestSolver::Essen, inl_size, usac_params.threshold /
- ((K1.at<double>(0,0) + K1.at<double>(1,1) + K2.at<double>(0,0) + K2.at<double>(1,1)) / 4),
- cpts1_3d.rowRange(0,2), cpts2_3d.rowRange(0,2), model, mask);
- } catch (cv::Exception &e) {
- if (e.code != cv::Error::StsNotImplemented)
- FAIL() << "Essential matrix estimation failed!\n";
- // CV_Error(cv::Error::StsError, "Essential matrix estimation failed!");
- }
- std::vector<int> inliers(pts_size);
- // P3P
- inl_size = generatePoints(rng, pts1, pts2, K1, K2, false, pts_size, TestSolver::PnP,
- getInlierRatio(usac_params.maxIterations, 3, usac_params.confidence), 0.01, gt_inliers);
- CV_Assert(cv::solvePnPRansac(pts2, pts1, K1, dist_coeff, rvec, tvec, inliers, usac_params));
- cv::Rodrigues(rvec, R); cv::hconcat(K1 * R, K1 * tvec, model);
- mask.create(pts_size, 1, CV_8U);
- mask.setTo(Scalar::all(0));
- for (auto inl : inliers)
- mask.at<uchar>(inl) = true;
- checkInliersMask(TestSolver::PnP, inl_size, usac_params.threshold, pts1, pts2, model, mask);
- // P6P
- inl_size = generatePoints(rng, pts1, pts2, K1, K2, false, pts_size, TestSolver::PnP,
- getInlierRatio(usac_params.maxIterations, 6, usac_params.confidence), 0.1, gt_inliers);
- cv::Mat K_est;
- CV_Assert(cv::solvePnPRansac(pts2, pts1, K_est, dist_coeff, rvec, tvec, inliers, usac_params));
- cv::Rodrigues(rvec, R); cv::hconcat(K_est * R, K_est * tvec, model);
- mask.setTo(Scalar::all(0));
- for (auto inl : inliers)
- mask.at<uchar>(inl) = true;
- checkInliersMask(TestSolver::PnP, inl_size, usac_params.threshold, pts1, pts2, model, mask);
- // Affine2D
- inl_size = generatePoints(rng, pts1, pts2, K1, K2, false, pts_size, TestSolver::Affine,
- getInlierRatio(usac_params.maxIterations, 3, usac_params.confidence), 0.1, gt_inliers);
- model = cv::estimateAffine2D(pts1, pts2, mask, usac_params);
- cv::vconcat(model, cv::Mat(cv::Matx13d(0,0,1)), model);
- checkInliersMask(TestSolver::Homogr, inl_size, usac_params.threshold, pts1, pts2, model, mask);
- }
- TEST(usac_solvePnPRansac, regression_21105) {
- std::vector<int> gt_inliers;
- const int pts_size = 100;
- double inl_ratio = 0.1;
- cv::Mat img_pts, obj_pts, K1, K2;
- cv::RNG &rng = cv::theRNG();
- generatePoints(rng, img_pts, obj_pts, K1, K2, false /*two calib*/,
- pts_size, TestSolver ::PnP, inl_ratio, 0.15 /*noise std*/, gt_inliers);
- const double conf = 0.99, thr = 2., max_iters = 1.3 * log(1 - conf) /
- log(1 - pow(inl_ratio, 3 /* sample size */));
- const int flag = USAC_DEFAULT;
- std::vector<int> inliers;
- cv::Matx31d rvec, tvec;
- CV_Assert(cv::solvePnPRansac(obj_pts, img_pts, K1, cv::noArray(), rvec, tvec,
- false, (int)max_iters, (float)thr, conf, inliers, flag));
- cv::Mat zero_column = cv::Mat::zeros(3, 1, K1.type());
- cv::hconcat(K1, zero_column, K1);
- cv::Mat K1_copy = K1.colRange(0, 3);
- std::vector<int> inliers_copy;
- cv::Matx31d rvec_copy, tvec_copy;
- CV_Assert(cv::solvePnPRansac(obj_pts, img_pts, K1_copy, cv::noArray(), rvec_copy, tvec_copy,
- false, (int)max_iters, (float)thr, conf, inliers_copy, flag));
- EXPECT_EQ(rvec, rvec_copy);
- EXPECT_EQ(tvec, tvec_copy);
- EXPECT_EQ(inliers, inliers_copy);
- }
- }} // namespace
|