123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // Intel License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of Intel Corporation may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- /*
- This is a regression test for stereo matching algorithms. This test gets some quality metrics
- described in "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms".
- Daniel Scharstein, Richard Szeliski
- */
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- const float EVAL_BAD_THRESH = 1.f;
- const int EVAL_TEXTURELESS_WIDTH = 3;
- const float EVAL_TEXTURELESS_THRESH = 4.f;
- const float EVAL_DISP_THRESH = 1.f;
- const float EVAL_DISP_GAP = 2.f;
- const int EVAL_DISCONT_WIDTH = 9;
- const int EVAL_IGNORE_BORDER = 10;
- const int ERROR_KINDS_COUNT = 6;
- //============================== quality measuring functions =================================================
- /*
- Calculate textureless regions of image (regions where the squared horizontal intensity gradient averaged over
- a square window of size=evalTexturelessWidth is below a threshold=evalTexturelessThresh) and textured regions.
- */
- void computeTextureBasedMasks( const Mat& _img, Mat* texturelessMask, Mat* texturedMask,
- int texturelessWidth = EVAL_TEXTURELESS_WIDTH, float texturelessThresh = EVAL_TEXTURELESS_THRESH )
- {
- if( !texturelessMask && !texturedMask )
- return;
- if( _img.empty() )
- CV_Error( Error::StsBadArg, "img is empty" );
- Mat img = _img;
- if( _img.channels() > 1)
- {
- Mat tmp; cvtColor( _img, tmp, COLOR_BGR2GRAY ); img = tmp;
- }
- Mat dxI; Sobel( img, dxI, CV_32FC1, 1, 0, 3 );
- Mat dxI2; pow( dxI / 8.f/*normalize*/, 2, dxI2 );
- Mat avgDxI2; boxFilter( dxI2, avgDxI2, CV_32FC1, Size(texturelessWidth,texturelessWidth) );
- if( texturelessMask )
- *texturelessMask = avgDxI2 < texturelessThresh;
- if( texturedMask )
- *texturedMask = avgDxI2 >= texturelessThresh;
- }
- void checkTypeAndSizeOfDisp( const Mat& dispMap, const Size* sz )
- {
- if( dispMap.empty() )
- CV_Error( Error::StsBadArg, "dispMap is empty" );
- if( dispMap.type() != CV_32FC1 )
- CV_Error( Error::StsBadArg, "dispMap must have CV_32FC1 type" );
- if( sz && (dispMap.rows != sz->height || dispMap.cols != sz->width) )
- CV_Error( Error::StsBadArg, "dispMap has incorrect size" );
- }
- void checkTypeAndSizeOfMask( const Mat& mask, Size sz )
- {
- if( mask.empty() )
- CV_Error( Error::StsBadArg, "mask is empty" );
- if( mask.type() != CV_8UC1 )
- CV_Error( Error::StsBadArg, "mask must have CV_8UC1 type" );
- if( mask.rows != sz.height || mask.cols != sz.width )
- CV_Error( Error::StsBadArg, "mask has incorrect size" );
- }
- void checkDispMapsAndUnknDispMasks( const Mat& leftDispMap, const Mat& rightDispMap,
- const Mat& leftUnknDispMask, const Mat& rightUnknDispMask )
- {
- // check type and size of disparity maps
- checkTypeAndSizeOfDisp( leftDispMap, 0 );
- if( !rightDispMap.empty() )
- {
- Size sz = leftDispMap.size();
- checkTypeAndSizeOfDisp( rightDispMap, &sz );
- }
- // check size and type of unknown disparity maps
- if( !leftUnknDispMask.empty() )
- checkTypeAndSizeOfMask( leftUnknDispMask, leftDispMap.size() );
- if( !rightUnknDispMask.empty() )
- checkTypeAndSizeOfMask( rightUnknDispMask, rightDispMap.size() );
- // check values of disparity maps (known disparity values musy be positive)
- double leftMinVal = 0, rightMinVal = 0;
- if( leftUnknDispMask.empty() )
- minMaxLoc( leftDispMap, &leftMinVal );
- else
- minMaxLoc( leftDispMap, &leftMinVal, 0, 0, 0, ~leftUnknDispMask );
- if( !rightDispMap.empty() )
- {
- if( rightUnknDispMask.empty() )
- minMaxLoc( rightDispMap, &rightMinVal );
- else
- minMaxLoc( rightDispMap, &rightMinVal, 0, 0, 0, ~rightUnknDispMask );
- }
- if( leftMinVal < 0 || rightMinVal < 0)
- CV_Error( Error::StsBadArg, "known disparity values must be positive" );
- }
- /*
- Calculate occluded regions of reference image (left image) (regions that are occluded in the matching image (right image),
- i.e., where the forward-mapped disparity lands at a location with a larger (nearer) disparity) and non occluded regions.
- */
- void computeOcclusionBasedMasks( const Mat& leftDisp, const Mat& _rightDisp,
- Mat* occludedMask, Mat* nonOccludedMask,
- const Mat& leftUnknDispMask = Mat(), const Mat& rightUnknDispMask = Mat(),
- float dispThresh = EVAL_DISP_THRESH )
- {
- if( !occludedMask && !nonOccludedMask )
- return;
- checkDispMapsAndUnknDispMasks( leftDisp, _rightDisp, leftUnknDispMask, rightUnknDispMask );
- Mat rightDisp;
- if( _rightDisp.empty() )
- {
- if( !rightUnknDispMask.empty() )
- CV_Error( Error::StsBadArg, "rightUnknDispMask must be empty if _rightDisp is empty" );
- rightDisp.create(leftDisp.size(), CV_32FC1);
- rightDisp.setTo(Scalar::all(0) );
- for( int leftY = 0; leftY < leftDisp.rows; leftY++ )
- {
- for( int leftX = 0; leftX < leftDisp.cols; leftX++ )
- {
- if( !leftUnknDispMask.empty() && leftUnknDispMask.at<uchar>(leftY,leftX) )
- continue;
- float leftDispVal = leftDisp.at<float>(leftY, leftX);
- int rightX = leftX - cvRound(leftDispVal), rightY = leftY;
- if( rightX >= 0)
- rightDisp.at<float>(rightY,rightX) = max(rightDisp.at<float>(rightY,rightX), leftDispVal);
- }
- }
- }
- else
- _rightDisp.copyTo(rightDisp);
- if( occludedMask )
- {
- occludedMask->create(leftDisp.size(), CV_8UC1);
- occludedMask->setTo(Scalar::all(0) );
- }
- if( nonOccludedMask )
- {
- nonOccludedMask->create(leftDisp.size(), CV_8UC1);
- nonOccludedMask->setTo(Scalar::all(0) );
- }
- for( int leftY = 0; leftY < leftDisp.rows; leftY++ )
- {
- for( int leftX = 0; leftX < leftDisp.cols; leftX++ )
- {
- if( !leftUnknDispMask.empty() && leftUnknDispMask.at<uchar>(leftY,leftX) )
- continue;
- float leftDispVal = leftDisp.at<float>(leftY, leftX);
- int rightX = leftX - cvRound(leftDispVal), rightY = leftY;
- if( rightX < 0 && occludedMask )
- occludedMask->at<uchar>(leftY, leftX) = 255;
- else
- {
- if( !rightUnknDispMask.empty() && rightUnknDispMask.at<uchar>(rightY,rightX) )
- continue;
- float rightDispVal = rightDisp.at<float>(rightY, rightX);
- if( rightDispVal > leftDispVal + dispThresh )
- {
- if( occludedMask )
- occludedMask->at<uchar>(leftY, leftX) = 255;
- }
- else
- {
- if( nonOccludedMask )
- nonOccludedMask->at<uchar>(leftY, leftX) = 255;
- }
- }
- }
- }
- }
- /*
- Calculate depth discontinuty regions: pixels whose neiboring disparities differ by more than
- dispGap, dilated by window of width discontWidth.
- */
- void computeDepthDiscontMask( const Mat& disp, Mat& depthDiscontMask, const Mat& unknDispMask = Mat(),
- float dispGap = EVAL_DISP_GAP, int discontWidth = EVAL_DISCONT_WIDTH )
- {
- if( disp.empty() )
- CV_Error( Error::StsBadArg, "disp is empty" );
- if( disp.type() != CV_32FC1 )
- CV_Error( Error::StsBadArg, "disp must have CV_32FC1 type" );
- if( !unknDispMask.empty() )
- checkTypeAndSizeOfMask( unknDispMask, disp.size() );
- Mat curDisp; disp.copyTo( curDisp );
- if( !unknDispMask.empty() )
- curDisp.setTo( Scalar(std::numeric_limits<float>::min()), unknDispMask );
- Mat maxNeighbDisp; dilate( curDisp, maxNeighbDisp, Mat(3, 3, CV_8UC1, Scalar(1)) );
- if( !unknDispMask.empty() )
- curDisp.setTo( Scalar(std::numeric_limits<float>::max()), unknDispMask );
- Mat minNeighbDisp; erode( curDisp, minNeighbDisp, Mat(3, 3, CV_8UC1, Scalar(1)) );
- depthDiscontMask = max( (Mat)(maxNeighbDisp-disp), (Mat)(disp-minNeighbDisp) ) > dispGap;
- if( !unknDispMask.empty() )
- depthDiscontMask &= ~unknDispMask;
- dilate( depthDiscontMask, depthDiscontMask, Mat(discontWidth, discontWidth, CV_8UC1, Scalar(1)) );
- }
- /*
- Get evaluation masks excluding a border.
- */
- Mat getBorderedMask( Size maskSize, int border = EVAL_IGNORE_BORDER )
- {
- CV_Assert( border >= 0 );
- Mat mask(maskSize, CV_8UC1, Scalar(0));
- int w = maskSize.width - 2*border, h = maskSize.height - 2*border;
- if( w < 0 || h < 0 )
- mask.setTo(Scalar(0));
- else
- mask( Rect(Point(border,border),Size(w,h)) ).setTo(Scalar(255));
- return mask;
- }
- /*
- Calculate root-mean-squared error between the computed disparity map (computedDisp) and ground truth map (groundTruthDisp).
- */
- float dispRMS( const Mat& computedDisp, const Mat& groundTruthDisp, const Mat& mask )
- {
- checkTypeAndSizeOfDisp( groundTruthDisp, 0 );
- Size sz = groundTruthDisp.size();
- checkTypeAndSizeOfDisp( computedDisp, &sz );
- int pointsCount = sz.height*sz.width;
- if( !mask.empty() )
- {
- checkTypeAndSizeOfMask( mask, sz );
- pointsCount = countNonZero(mask);
- }
- return 1.f/sqrt((float)pointsCount) * (float)cvtest::norm(computedDisp, groundTruthDisp, NORM_L2, mask);
- }
- /*
- Calculate fraction of bad matching pixels.
- */
- float badMatchPxlsFraction( const Mat& computedDisp, const Mat& groundTruthDisp, const Mat& mask,
- float _badThresh = EVAL_BAD_THRESH )
- {
- int badThresh = cvRound(_badThresh);
- checkTypeAndSizeOfDisp( groundTruthDisp, 0 );
- Size sz = groundTruthDisp.size();
- checkTypeAndSizeOfDisp( computedDisp, &sz );
- Mat badPxlsMap;
- absdiff( computedDisp, groundTruthDisp, badPxlsMap );
- badPxlsMap = badPxlsMap > badThresh;
- int pointsCount = sz.height*sz.width;
- if( !mask.empty() )
- {
- checkTypeAndSizeOfMask( mask, sz );
- badPxlsMap = badPxlsMap & mask;
- pointsCount = countNonZero(mask);
- }
- return 1.f/pointsCount * countNonZero(badPxlsMap);
- }
- //===================== regression test for stereo matching algorithms ==============================
- const string ALGORITHMS_DIR = "stereomatching/algorithms/";
- const string DATASETS_DIR = "stereomatching/datasets/";
- const string DATASETS_FILE = "datasets.xml";
- const string RUN_PARAMS_FILE = "_params.xml";
- const string RESULT_FILE = "_res.xml";
- const string LEFT_IMG_NAME = "im2.png";
- const string RIGHT_IMG_NAME = "im6.png";
- const string TRUE_LEFT_DISP_NAME = "disp2.png";
- const string TRUE_RIGHT_DISP_NAME = "disp6.png";
- string ERROR_PREFIXES[] = { "borderedAll",
- "borderedNoOccl",
- "borderedOccl",
- "borderedTextured",
- "borderedTextureless",
- "borderedDepthDiscont" }; // size of ERROR_KINDS_COUNT
- string ROI_PREFIXES[] = { "roiX",
- "roiY",
- "roiWidth",
- "roiHeight" };
- const string RMS_STR = "RMS";
- const string BAD_PXLS_FRACTION_STR = "BadPxlsFraction";
- const string ROI_STR = "ValidDisparityROI";
- class QualityEvalParams
- {
- public:
- QualityEvalParams() { setDefaults(); }
- QualityEvalParams( int _ignoreBorder )
- {
- setDefaults();
- ignoreBorder = _ignoreBorder;
- }
- void setDefaults()
- {
- badThresh = EVAL_BAD_THRESH;
- texturelessWidth = EVAL_TEXTURELESS_WIDTH;
- texturelessThresh = EVAL_TEXTURELESS_THRESH;
- dispThresh = EVAL_DISP_THRESH;
- dispGap = EVAL_DISP_GAP;
- discontWidth = EVAL_DISCONT_WIDTH;
- ignoreBorder = EVAL_IGNORE_BORDER;
- }
- float badThresh;
- int texturelessWidth;
- float texturelessThresh;
- float dispThresh;
- float dispGap;
- int discontWidth;
- int ignoreBorder;
- };
- class CV_StereoMatchingTest : public cvtest::BaseTest
- {
- public:
- CV_StereoMatchingTest()
- { rmsEps.resize( ERROR_KINDS_COUNT, 0.01f ); fracEps.resize( ERROR_KINDS_COUNT, 1.e-6f ); }
- protected:
- // assumed that left image is a reference image
- virtual int runStereoMatchingAlgorithm( const Mat& leftImg, const Mat& rightImg,
- Rect& calcROI, Mat& leftDisp, Mat& rightDisp, int caseIdx ) = 0; // return ignored border width
- int readDatasetsParams( FileStorage& fs );
- virtual int readRunParams( FileStorage& fs );
- void writeErrors( const string& errName, const vector<float>& errors, FileStorage* fs = 0 );
- void writeROI( const Rect& calcROI, FileStorage* fs = 0 );
- void readErrors( FileNode& fn, const string& errName, vector<float>& errors );
- void readROI( FileNode& fn, Rect& trueROI );
- int compareErrors( const vector<float>& calcErrors, const vector<float>& validErrors,
- const vector<float>& eps, const string& errName );
- int compareROI( const Rect& calcROI, const Rect& validROI );
- int processStereoMatchingResults( FileStorage& fs, int caseIdx, bool isWrite,
- const Mat& leftImg, const Mat& rightImg,
- const Rect& calcROI,
- const Mat& trueLeftDisp, const Mat& trueRightDisp,
- const Mat& leftDisp, const Mat& rightDisp,
- const QualityEvalParams& qualityEvalParams );
- void run( int );
- vector<float> rmsEps;
- vector<float> fracEps;
- struct DatasetParams
- {
- int dispScaleFactor;
- int dispUnknVal;
- };
- map<string, DatasetParams> datasetsParams;
- vector<string> caseNames;
- vector<string> caseDatasets;
- };
- void CV_StereoMatchingTest::run(int)
- {
- string dataPath = ts->get_data_path() + "cv/";
- string algorithmName = name;
- CV_Assert( !algorithmName.empty() );
- if( dataPath.empty() )
- {
- ts->printf( cvtest::TS::LOG, "dataPath is empty" );
- ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ARG_CHECK );
- return;
- }
- FileStorage datasetsFS( dataPath + DATASETS_DIR + DATASETS_FILE, FileStorage::READ );
- int code = readDatasetsParams( datasetsFS );
- if( code != cvtest::TS::OK )
- {
- ts->set_failed_test_info( code );
- return;
- }
- FileStorage runParamsFS( dataPath + ALGORITHMS_DIR + algorithmName + RUN_PARAMS_FILE, FileStorage::READ );
- code = readRunParams( runParamsFS );
- if( code != cvtest::TS::OK )
- {
- ts->set_failed_test_info( code );
- return;
- }
- string fullResultFilename = dataPath + ALGORITHMS_DIR + algorithmName + RESULT_FILE;
- FileStorage resFS( fullResultFilename, FileStorage::READ );
- bool isWrite = true; // write or compare results
- if( resFS.isOpened() )
- isWrite = false;
- else
- {
- resFS.open( fullResultFilename, FileStorage::WRITE );
- if( !resFS.isOpened() )
- {
- ts->printf( cvtest::TS::LOG, "file %s can not be read or written\n", fullResultFilename.c_str() );
- ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ARG_CHECK );
- return;
- }
- resFS << "stereo_matching" << "{";
- }
- int progress = 0, caseCount = (int)caseNames.size();
- for( int ci = 0; ci < caseCount; ci++)
- {
- progress = update_progress( progress, ci, caseCount, 0 );
- printf("progress: %d%%\n", progress);
- fflush(stdout);
- string datasetName = caseDatasets[ci];
- string datasetFullDirName = dataPath + DATASETS_DIR + datasetName + "/";
- Mat leftImg = imread(datasetFullDirName + LEFT_IMG_NAME);
- Mat rightImg = imread(datasetFullDirName + RIGHT_IMG_NAME);
- Mat trueLeftDisp = imread(datasetFullDirName + TRUE_LEFT_DISP_NAME, 0);
- Mat trueRightDisp = imread(datasetFullDirName + TRUE_RIGHT_DISP_NAME, 0);
- Rect calcROI;
- if( leftImg.empty() || rightImg.empty() || trueLeftDisp.empty() )
- {
- ts->printf( cvtest::TS::LOG, "images or left ground-truth disparities of dataset %s can not be read", datasetName.c_str() );
- code = cvtest::TS::FAIL_INVALID_TEST_DATA;
- continue;
- }
- int dispScaleFactor = datasetsParams[datasetName].dispScaleFactor;
- Mat tmp;
- trueLeftDisp.convertTo( tmp, CV_32FC1, 1.f/dispScaleFactor );
- trueLeftDisp = tmp;
- tmp.release();
- if( !trueRightDisp.empty() )
- {
- trueRightDisp.convertTo( tmp, CV_32FC1, 1.f/dispScaleFactor );
- trueRightDisp = tmp;
- tmp.release();
- }
- Mat leftDisp, rightDisp;
- int ignBorder = max(runStereoMatchingAlgorithm(leftImg, rightImg, calcROI, leftDisp, rightDisp, ci), EVAL_IGNORE_BORDER);
- leftDisp.convertTo( tmp, CV_32FC1 );
- leftDisp = tmp;
- tmp.release();
- rightDisp.convertTo( tmp, CV_32FC1 );
- rightDisp = tmp;
- tmp.release();
- int tempCode = processStereoMatchingResults( resFS, ci, isWrite,
- leftImg, rightImg, calcROI, trueLeftDisp, trueRightDisp, leftDisp, rightDisp, QualityEvalParams(ignBorder));
- code = tempCode==cvtest::TS::OK ? code : tempCode;
- }
- if( isWrite )
- resFS << "}"; // "stereo_matching"
- ts->set_failed_test_info( code );
- }
- void calcErrors( const Mat& leftImg, const Mat& /*rightImg*/,
- const Mat& trueLeftDisp, const Mat& trueRightDisp,
- const Mat& trueLeftUnknDispMask, const Mat& trueRightUnknDispMask,
- const Mat& calcLeftDisp, const Mat& /*calcRightDisp*/,
- vector<float>& rms, vector<float>& badPxlsFractions,
- const QualityEvalParams& qualityEvalParams )
- {
- Mat texturelessMask, texturedMask;
- computeTextureBasedMasks( leftImg, &texturelessMask, &texturedMask,
- qualityEvalParams.texturelessWidth, qualityEvalParams.texturelessThresh );
- Mat occludedMask, nonOccludedMask;
- computeOcclusionBasedMasks( trueLeftDisp, trueRightDisp, &occludedMask, &nonOccludedMask,
- trueLeftUnknDispMask, trueRightUnknDispMask, qualityEvalParams.dispThresh);
- Mat depthDiscontMask;
- computeDepthDiscontMask( trueLeftDisp, depthDiscontMask, trueLeftUnknDispMask,
- qualityEvalParams.dispGap, qualityEvalParams.discontWidth);
- Mat borderedKnownMask = getBorderedMask( leftImg.size(), qualityEvalParams.ignoreBorder ) & ~trueLeftUnknDispMask;
- nonOccludedMask &= borderedKnownMask;
- occludedMask &= borderedKnownMask;
- texturedMask &= nonOccludedMask; // & borderedKnownMask
- texturelessMask &= nonOccludedMask; // & borderedKnownMask
- depthDiscontMask &= nonOccludedMask; // & borderedKnownMask
- rms.resize(ERROR_KINDS_COUNT);
- rms[0] = dispRMS( calcLeftDisp, trueLeftDisp, borderedKnownMask );
- rms[1] = dispRMS( calcLeftDisp, trueLeftDisp, nonOccludedMask );
- rms[2] = dispRMS( calcLeftDisp, trueLeftDisp, occludedMask );
- rms[3] = dispRMS( calcLeftDisp, trueLeftDisp, texturedMask );
- rms[4] = dispRMS( calcLeftDisp, trueLeftDisp, texturelessMask );
- rms[5] = dispRMS( calcLeftDisp, trueLeftDisp, depthDiscontMask );
- badPxlsFractions.resize(ERROR_KINDS_COUNT);
- badPxlsFractions[0] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, borderedKnownMask, qualityEvalParams.badThresh );
- badPxlsFractions[1] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, nonOccludedMask, qualityEvalParams.badThresh );
- badPxlsFractions[2] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, occludedMask, qualityEvalParams.badThresh );
- badPxlsFractions[3] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, texturedMask, qualityEvalParams.badThresh );
- badPxlsFractions[4] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, texturelessMask, qualityEvalParams.badThresh );
- badPxlsFractions[5] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, depthDiscontMask, qualityEvalParams.badThresh );
- }
- int CV_StereoMatchingTest::processStereoMatchingResults( FileStorage& fs, int caseIdx, bool isWrite,
- const Mat& leftImg, const Mat& rightImg,
- const Rect& calcROI,
- const Mat& trueLeftDisp, const Mat& trueRightDisp,
- const Mat& leftDisp, const Mat& rightDisp,
- const QualityEvalParams& qualityEvalParams )
- {
- // rightDisp is not used in current test virsion
- int code = cvtest::TS::OK;
- CV_Assert( fs.isOpened() );
- CV_Assert( trueLeftDisp.type() == CV_32FC1 );
- CV_Assert( trueRightDisp.empty() || trueRightDisp.type() == CV_32FC1 );
- CV_Assert( leftDisp.type() == CV_32FC1 && (rightDisp.empty() || rightDisp.type() == CV_32FC1) );
- // get masks for unknown ground truth disparity values
- Mat leftUnknMask, rightUnknMask;
- DatasetParams params = datasetsParams[caseDatasets[caseIdx]];
- absdiff( trueLeftDisp, Scalar(params.dispUnknVal), leftUnknMask );
- leftUnknMask = leftUnknMask < std::numeric_limits<float>::epsilon();
- CV_Assert(leftUnknMask.type() == CV_8UC1);
- if( !trueRightDisp.empty() )
- {
- absdiff( trueRightDisp, Scalar(params.dispUnknVal), rightUnknMask );
- rightUnknMask = rightUnknMask < std::numeric_limits<float>::epsilon();
- CV_Assert(rightUnknMask.type() == CV_8UC1);
- }
- // calculate errors
- vector<float> rmss, badPxlsFractions;
- calcErrors( leftImg, rightImg, trueLeftDisp, trueRightDisp, leftUnknMask, rightUnknMask,
- leftDisp, rightDisp, rmss, badPxlsFractions, qualityEvalParams );
- if( isWrite )
- {
- fs << caseNames[caseIdx] << "{";
- fs.writeComment( RMS_STR, 0 );
- writeErrors( RMS_STR, rmss, &fs );
- fs.writeComment( BAD_PXLS_FRACTION_STR, 0 );
- writeErrors( BAD_PXLS_FRACTION_STR, badPxlsFractions, &fs );
- fs.writeComment( ROI_STR, 0 );
- writeROI( calcROI, &fs );
- fs << "}"; // datasetName
- }
- else // compare
- {
- ts->printf( cvtest::TS::LOG, "\nquality of case named %s\n", caseNames[caseIdx].c_str() );
- ts->printf( cvtest::TS::LOG, "%s\n", RMS_STR.c_str() );
- writeErrors( RMS_STR, rmss );
- ts->printf( cvtest::TS::LOG, "%s\n", BAD_PXLS_FRACTION_STR.c_str() );
- writeErrors( BAD_PXLS_FRACTION_STR, badPxlsFractions );
- ts->printf( cvtest::TS::LOG, "%s\n", ROI_STR.c_str() );
- writeROI( calcROI );
- FileNode fn = fs.getFirstTopLevelNode()[caseNames[caseIdx]];
- vector<float> validRmss, validBadPxlsFractions;
- Rect validROI;
- readErrors( fn, RMS_STR, validRmss );
- readErrors( fn, BAD_PXLS_FRACTION_STR, validBadPxlsFractions );
- readROI( fn, validROI );
- int tempCode = compareErrors( rmss, validRmss, rmsEps, RMS_STR );
- code = tempCode==cvtest::TS::OK ? code : tempCode;
- tempCode = compareErrors( badPxlsFractions, validBadPxlsFractions, fracEps, BAD_PXLS_FRACTION_STR );
- code = tempCode==cvtest::TS::OK ? code : tempCode;
- tempCode = compareROI( calcROI, validROI );
- code = tempCode==cvtest::TS::OK ? code : tempCode;
- }
- return code;
- }
- int CV_StereoMatchingTest::readDatasetsParams( FileStorage& fs )
- {
- if( !fs.isOpened() )
- {
- ts->printf( cvtest::TS::LOG, "datasetsParams can not be read " );
- return cvtest::TS::FAIL_INVALID_TEST_DATA;
- }
- datasetsParams.clear();
- FileNode fn = fs.getFirstTopLevelNode();
- CV_Assert(fn.isSeq());
- for( int i = 0; i < (int)fn.size(); i+=3 )
- {
- String _name = fn[i];
- DatasetParams params;
- String sf = fn[i+1]; params.dispScaleFactor = atoi(sf.c_str());
- String uv = fn[i+2]; params.dispUnknVal = atoi(uv.c_str());
- datasetsParams[_name] = params;
- }
- return cvtest::TS::OK;
- }
- int CV_StereoMatchingTest::readRunParams( FileStorage& fs )
- {
- if( !fs.isOpened() )
- {
- ts->printf( cvtest::TS::LOG, "runParams can not be read " );
- return cvtest::TS::FAIL_INVALID_TEST_DATA;
- }
- caseNames.clear();;
- caseDatasets.clear();
- return cvtest::TS::OK;
- }
- void CV_StereoMatchingTest::writeErrors( const string& errName, const vector<float>& errors, FileStorage* fs )
- {
- CV_Assert( (int)errors.size() == ERROR_KINDS_COUNT );
- vector<float>::const_iterator it = errors.begin();
- if( fs )
- for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++it )
- *fs << ERROR_PREFIXES[i] + errName << *it;
- else
- for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++it )
- ts->printf( cvtest::TS::LOG, "%s = %f\n", string(ERROR_PREFIXES[i]+errName).c_str(), *it );
- }
- void CV_StereoMatchingTest::writeROI( const Rect& calcROI, FileStorage* fs )
- {
- if( fs )
- {
- *fs << ROI_PREFIXES[0] << calcROI.x;
- *fs << ROI_PREFIXES[1] << calcROI.y;
- *fs << ROI_PREFIXES[2] << calcROI.width;
- *fs << ROI_PREFIXES[3] << calcROI.height;
- }
- else
- {
- ts->printf( cvtest::TS::LOG, "%s = %d\n", ROI_PREFIXES[0].c_str(), calcROI.x );
- ts->printf( cvtest::TS::LOG, "%s = %d\n", ROI_PREFIXES[1].c_str(), calcROI.y );
- ts->printf( cvtest::TS::LOG, "%s = %d\n", ROI_PREFIXES[2].c_str(), calcROI.width );
- ts->printf( cvtest::TS::LOG, "%s = %d\n", ROI_PREFIXES[3].c_str(), calcROI.height );
- }
- }
- void CV_StereoMatchingTest::readErrors( FileNode& fn, const string& errName, vector<float>& errors )
- {
- errors.resize( ERROR_KINDS_COUNT );
- vector<float>::iterator it = errors.begin();
- for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++it )
- fn[ERROR_PREFIXES[i]+errName] >> *it;
- }
- void CV_StereoMatchingTest::readROI( FileNode& fn, Rect& validROI )
- {
- fn[ROI_PREFIXES[0]] >> validROI.x;
- fn[ROI_PREFIXES[1]] >> validROI.y;
- fn[ROI_PREFIXES[2]] >> validROI.width;
- fn[ROI_PREFIXES[3]] >> validROI.height;
- }
- int CV_StereoMatchingTest::compareErrors( const vector<float>& calcErrors, const vector<float>& validErrors,
- const vector<float>& eps, const string& errName )
- {
- CV_Assert( (int)calcErrors.size() == ERROR_KINDS_COUNT );
- CV_Assert( (int)validErrors.size() == ERROR_KINDS_COUNT );
- CV_Assert( (int)eps.size() == ERROR_KINDS_COUNT );
- vector<float>::const_iterator calcIt = calcErrors.begin(),
- validIt = validErrors.begin(),
- epsIt = eps.begin();
- bool ok = true;
- for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++calcIt, ++validIt, ++epsIt )
- if( *calcIt - *validIt > *epsIt )
- {
- ts->printf( cvtest::TS::LOG, "bad accuracy of %s (valid=%f; calc=%f)\n", string(ERROR_PREFIXES[i]+errName).c_str(), *validIt, *calcIt );
- ok = false;
- }
- return ok ? cvtest::TS::OK : cvtest::TS::FAIL_BAD_ACCURACY;
- }
- int CV_StereoMatchingTest::compareROI( const Rect& calcROI, const Rect& validROI )
- {
- int compare[4][2] = {
- { calcROI.x, validROI.x },
- { calcROI.y, validROI.y },
- { calcROI.width, validROI.width },
- { calcROI.height, validROI.height },
- };
- bool ok = true;
- for (int i = 0; i < 4; i++)
- {
- if (compare[i][0] != compare[i][1])
- {
- ts->printf( cvtest::TS::LOG, "bad accuracy of %s (valid=%d; calc=%d)\n", ROI_PREFIXES[i].c_str(), compare[i][1], compare[i][0] );
- ok = false;
- }
- }
- return ok ? cvtest::TS::OK : cvtest::TS::FAIL_BAD_ACCURACY;
- }
- //----------------------------------- StereoBM test -----------------------------------------------------
- class CV_StereoBMTest : public CV_StereoMatchingTest
- {
- public:
- CV_StereoBMTest()
- {
- name = "stereobm";
- fill(rmsEps.begin(), rmsEps.end(), 0.4f);
- fill(fracEps.begin(), fracEps.end(), 0.022f);
- }
- protected:
- struct RunParams
- {
- int ndisp;
- int mindisp;
- int winSize;
- };
- vector<RunParams> caseRunParams;
- virtual int readRunParams( FileStorage& fs )
- {
- int code = CV_StereoMatchingTest::readRunParams( fs );
- FileNode fn = fs.getFirstTopLevelNode();
- CV_Assert(fn.isSeq());
- for( int i = 0; i < (int)fn.size(); i+=5 )
- {
- String caseName = fn[i], datasetName = fn[i+1];
- RunParams params;
- String ndisp = fn[i+2]; params.ndisp = atoi(ndisp.c_str());
- String mindisp = fn[i+3]; params.mindisp = atoi(mindisp.c_str());
- String winSize = fn[i+4]; params.winSize = atoi(winSize.c_str());
- caseNames.push_back( caseName );
- caseDatasets.push_back( datasetName );
- caseRunParams.push_back( params );
- }
- return code;
- }
- virtual int runStereoMatchingAlgorithm( const Mat& _leftImg, const Mat& _rightImg,
- Rect& calcROI, Mat& leftDisp, Mat& /*rightDisp*/, int caseIdx )
- {
- RunParams params = caseRunParams[caseIdx];
- CV_Assert( params.ndisp%16 == 0 );
- CV_Assert( _leftImg.type() == CV_8UC3 && _rightImg.type() == CV_8UC3 );
- Mat leftImg; cvtColor( _leftImg, leftImg, COLOR_BGR2GRAY );
- Mat rightImg; cvtColor( _rightImg, rightImg, COLOR_BGR2GRAY );
- Ptr<StereoBM> bm = StereoBM::create( params.ndisp, params.winSize );
- Mat tempDisp;
- bm->setMinDisparity(params.mindisp);
- Rect cROI(0, 0, _leftImg.cols, _leftImg.rows);
- calcROI = getValidDisparityROI(cROI, cROI, params.mindisp, params.ndisp, params.winSize);
- bm->compute( leftImg, rightImg, tempDisp );
- tempDisp.convertTo(leftDisp, CV_32F, 1./StereoMatcher::DISP_SCALE);
- //check for fixed-type disparity data type
- Mat_<float> fixedFloatDisp;
- bm->compute( leftImg, rightImg, fixedFloatDisp );
- EXPECT_LT(cvtest::norm(fixedFloatDisp, leftDisp, cv::NORM_L2 | cv::NORM_RELATIVE),
- 0.005 + DBL_EPSILON);
- if (params.mindisp != 0)
- for (int y = 0; y < leftDisp.rows; y++)
- for (int x = 0; x < leftDisp.cols; x++)
- {
- if (leftDisp.at<float>(y, x) < params.mindisp)
- leftDisp.at<float>(y, x) = -1./StereoMatcher::DISP_SCALE; // treat disparity < mindisp as no disparity
- }
- return params.winSize/2;
- }
- };
- TEST(Calib3d_StereoBM, regression) { CV_StereoBMTest test; test.safe_run(); }
- /* < preFilter, < preFilterCap, SADWindowSize > >*/
- typedef tuple < int, tuple < int, int > > BufferBM_Params_t;
- typedef testing::TestWithParam< BufferBM_Params_t > Calib3d_StereoBM_BufferBM;
- const int preFilters[] =
- {
- StereoBM::PREFILTER_NORMALIZED_RESPONSE,
- StereoBM::PREFILTER_XSOBEL
- };
- const tuple < int, int > useShortsConditions[] =
- {
- make_tuple(30, 19),
- make_tuple(32, 23)
- };
- TEST_P(Calib3d_StereoBM_BufferBM, memAllocsTest)
- {
- const int preFilter = get<0>(GetParam());
- const int preFilterCap = get<0>(get<1>(GetParam()));
- const int SADWindowSize = get<1>(get<1>(GetParam()));
- String path = cvtest::TS::ptr()->get_data_path() + "cv/stereomatching/datasets/teddy/";
- Mat leftImg = imread(path + "im2.png", 0);
- ASSERT_FALSE(leftImg.empty());
- Mat rightImg = imread(path + "im6.png", 0);
- ASSERT_FALSE(rightImg.empty());
- Mat leftDisp;
- {
- Ptr<StereoBM> bm = StereoBM::create(16,9);
- bm->setPreFilterType(preFilter);
- bm->setPreFilterCap(preFilterCap);
- bm->setBlockSize(SADWindowSize);
- bm->compute( leftImg, rightImg, leftDisp);
- ASSERT_FALSE(leftDisp.empty());
- }
- }
- INSTANTIATE_TEST_CASE_P(/*nothing*/, Calib3d_StereoBM_BufferBM,
- testing::Combine(
- testing::ValuesIn(preFilters),
- testing::ValuesIn(useShortsConditions)
- )
- );
- //----------------------------------- StereoSGBM test -----------------------------------------------------
- class CV_StereoSGBMTest : public CV_StereoMatchingTest
- {
- public:
- CV_StereoSGBMTest()
- {
- name = "stereosgbm";
- fill(rmsEps.begin(), rmsEps.end(), 0.25f);
- fill(fracEps.begin(), fracEps.end(), 0.01f);
- }
- protected:
- struct RunParams
- {
- int ndisp;
- int winSize;
- int mode;
- };
- vector<RunParams> caseRunParams;
- virtual int readRunParams( FileStorage& fs )
- {
- int code = CV_StereoMatchingTest::readRunParams(fs);
- FileNode fn = fs.getFirstTopLevelNode();
- CV_Assert(fn.isSeq());
- for( int i = 0; i < (int)fn.size(); i+=5 )
- {
- String caseName = fn[i], datasetName = fn[i+1];
- RunParams params;
- String ndisp = fn[i+2]; params.ndisp = atoi(ndisp.c_str());
- String winSize = fn[i+3]; params.winSize = atoi(winSize.c_str());
- String mode = fn[i+4]; params.mode = atoi(mode.c_str());
- caseNames.push_back( caseName );
- caseDatasets.push_back( datasetName );
- caseRunParams.push_back( params );
- }
- return code;
- }
- virtual int runStereoMatchingAlgorithm( const Mat& leftImg, const Mat& rightImg,
- Rect& calcROI, Mat& leftDisp, Mat& /*rightDisp*/, int caseIdx )
- {
- RunParams params = caseRunParams[caseIdx];
- CV_Assert( params.ndisp%16 == 0 );
- Ptr<StereoSGBM> sgbm = StereoSGBM::create( 0, params.ndisp, params.winSize,
- 10*params.winSize*params.winSize,
- 40*params.winSize*params.winSize,
- 1, 63, 10, 100, 32, params.mode );
- Rect cROI(0, 0, leftImg.cols, leftImg.rows);
- calcROI = getValidDisparityROI(cROI, cROI, 0, params.ndisp, params.winSize);
- sgbm->compute( leftImg, rightImg, leftDisp );
- CV_Assert( leftDisp.type() == CV_16SC1 );
- leftDisp/=16;
- return 0;
- }
- };
- TEST(Calib3d_StereoSGBM, regression) { CV_StereoSGBMTest test; test.safe_run(); }
- TEST(Calib3d_StereoSGBM_HH4, regression)
- {
- String path = cvtest::TS::ptr()->get_data_path() + "cv/stereomatching/datasets/teddy/";
- Mat leftImg = imread(path + "im2.png", 0);
- ASSERT_FALSE(leftImg.empty());
- Mat rightImg = imread(path + "im6.png", 0);
- ASSERT_FALSE(rightImg.empty());
- Mat testData = imread(path + "disp2_hh4.png",-1);
- ASSERT_FALSE(testData.empty());
- Mat leftDisp;
- Mat toCheck;
- {
- Ptr<StereoSGBM> sgbm = StereoSGBM::create( 0, 48, 3, 90, 360, 1, 63, 10, 100, 32, StereoSGBM::MODE_HH4);
- sgbm->compute( leftImg, rightImg, leftDisp);
- CV_Assert( leftDisp.type() == CV_16SC1 );
- leftDisp.convertTo(toCheck, CV_16UC1,1,16);
- }
- Mat diff;
- absdiff(toCheck, testData,diff);
- CV_Assert( countNonZero(diff)==0);
- }
- }} // namespace
|