12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- //Statistics Helpers
- struct ErrorInfo
- {
- ErrorInfo(double errT, double errR) : errorTrans(errT), errorRot(errR)
- {
- }
- bool operator<(const ErrorInfo& e) const
- {
- return sqrt(errorTrans*errorTrans + errorRot*errorRot) <
- sqrt(e.errorTrans*e.errorTrans + e.errorRot*e.errorRot);
- }
- double errorTrans;
- double errorRot;
- };
- //Try to find the translation and rotation thresholds to achieve a predefined percentage of success.
- //Since a success is defined by error_trans < trans_thresh && error_rot < rot_thresh
- //this just gives an idea of the values to use
- static void findThreshold(const std::vector<double>& v_trans, const std::vector<double>& v_rot, double percentage,
- double& transThresh, double& rotThresh)
- {
- if (v_trans.empty() || v_rot.empty() || v_trans.size() != v_rot.size())
- {
- transThresh = -1;
- rotThresh = -1;
- return;
- }
- std::vector<ErrorInfo> error_info;
- error_info.reserve(v_trans.size());
- for (size_t i = 0; i < v_trans.size(); i++)
- {
- error_info.push_back(ErrorInfo(v_trans[i], v_rot[i]));
- }
- std::sort(error_info.begin(), error_info.end());
- size_t idx = static_cast<size_t>(error_info.size() * percentage);
- transThresh = error_info[idx].errorTrans;
- rotThresh = error_info[idx].errorRot;
- }
- static double getMax(const std::vector<double>& v)
- {
- return *std::max_element(v.begin(), v.end());
- }
- static double getMean(const std::vector<double>& v)
- {
- if (v.empty())
- {
- return 0.0;
- }
- double sum = std::accumulate(v.begin(), v.end(), 0.0);
- return sum / v.size();
- }
- static double getMedian(const std::vector<double>& v)
- {
- if (v.empty())
- {
- return 0.0;
- }
- std::vector<double> v_copy = v;
- size_t size = v_copy.size();
- size_t n = size / 2;
- std::nth_element(v_copy.begin(), v_copy.begin() + n, v_copy.end());
- double val_n = v_copy[n];
- if (size % 2 == 1)
- {
- return val_n;
- } else
- {
- std::nth_element(v_copy.begin(), v_copy.begin() + n - 1, v_copy.end());
- return 0.5 * (val_n + v_copy[n - 1]);
- }
- }
- static void generatePose(const vector<Point3d>& points, Mat& rvec, Mat& tvec, RNG& rng, int nbTrials=10)
- {
- const double minVal = 1.0e-3;
- const double maxVal = 1.0;
- rvec.create(3, 1, CV_64FC1);
- tvec.create(3, 1, CV_64FC1);
- bool validPose = false;
- for (int trial = 0; trial < nbTrials && !validPose; trial++)
- {
- for (int i = 0; i < 3; i++)
- {
- rvec.at<double>(i,0) = rng.uniform(minVal, maxVal);
- tvec.at<double>(i,0) = (i == 2) ? rng.uniform(minVal*10, maxVal) : rng.uniform(-maxVal, maxVal);
- }
- Mat R;
- cv::Rodrigues(rvec, R);
- bool positiveDepth = true;
- for (size_t i = 0; i < points.size() && positiveDepth; i++)
- {
- Matx31d objPts(points[i].x, points[i].y, points[i].z);
- Mat camPts = R*objPts + tvec;
- if (camPts.at<double>(2,0) <= 0)
- {
- positiveDepth = false;
- }
- }
- validPose = positiveDepth;
- }
- }
- static void generatePose(const vector<Point3f>& points, Mat& rvec, Mat& tvec, RNG& rng, int nbTrials=10)
- {
- vector<Point3d> points_double(points.size());
- for (size_t i = 0; i < points.size(); i++)
- {
- points_double[i] = Point3d(points[i].x, points[i].y, points[i].z);
- }
- generatePose(points_double, rvec, tvec, rng, nbTrials);
- }
- static std::string printMethod(int method)
- {
- switch (method) {
- case 0:
- return "SOLVEPNP_ITERATIVE";
- case 1:
- return "SOLVEPNP_EPNP";
- case 2:
- return "SOLVEPNP_P3P";
- case 3:
- return "SOLVEPNP_DLS (remaped to SOLVEPNP_EPNP)";
- case 4:
- return "SOLVEPNP_UPNP (remaped to SOLVEPNP_EPNP)";
- case 5:
- return "SOLVEPNP_AP3P";
- case 6:
- return "SOLVEPNP_IPPE";
- case 7:
- return "SOLVEPNP_IPPE_SQUARE";
- case 8:
- return "SOLVEPNP_SQPNP";
- default:
- return "Unknown value";
- }
- }
- class CV_solvePnPRansac_Test : public cvtest::BaseTest
- {
- public:
- CV_solvePnPRansac_Test(bool planar_=false, bool planarTag_=false) : planar(planar_), planarTag(planarTag_)
- {
- eps[SOLVEPNP_ITERATIVE] = 1.0e-2;
- eps[SOLVEPNP_EPNP] = 1.0e-2;
- eps[SOLVEPNP_P3P] = 1.0e-2;
- eps[SOLVEPNP_AP3P] = 1.0e-2;
- eps[SOLVEPNP_DLS] = 1.0e-2;
- eps[SOLVEPNP_UPNP] = 1.0e-2;
- eps[SOLVEPNP_SQPNP] = 1.0e-2;
- totalTestsCount = 10;
- pointsCount = 500;
- }
- ~CV_solvePnPRansac_Test() {}
- protected:
- void generate3DPointCloud(vector<Point3f>& points,
- Point3f pmin = Point3f(-1, -1, 5),
- Point3f pmax = Point3f(1, 1, 10))
- {
- RNG& rng = theRNG(); // fix the seed to use "fixed" input 3D points
- for (size_t i = 0; i < points.size(); i++)
- {
- float _x = rng.uniform(pmin.x, pmax.x);
- float _y = rng.uniform(pmin.y, pmax.y);
- float _z = rng.uniform(pmin.z, pmax.z);
- points[i] = Point3f(_x, _y, _z);
- }
- }
- void generatePlanarPointCloud(vector<Point3f>& points,
- Point2f pmin = Point2f(-1, -1),
- Point2f pmax = Point2f(1, 1))
- {
- RNG& rng = theRNG(); // fix the seed to use "fixed" input 3D points
- if (planarTag)
- {
- const float squareLength_2 = rng.uniform(0.01f, pmax.x) / 2;
- points.clear();
- points.push_back(Point3f(-squareLength_2, squareLength_2, 0));
- points.push_back(Point3f(squareLength_2, squareLength_2, 0));
- points.push_back(Point3f(squareLength_2, -squareLength_2, 0));
- points.push_back(Point3f(-squareLength_2, -squareLength_2, 0));
- }
- else
- {
- Mat rvec_double, tvec_double;
- generatePose(points, rvec_double, tvec_double, rng);
- Mat rvec, tvec, R;
- rvec_double.convertTo(rvec, CV_32F);
- tvec_double.convertTo(tvec, CV_32F);
- cv::Rodrigues(rvec, R);
- for (size_t i = 0; i < points.size(); i++)
- {
- float x = rng.uniform(pmin.x, pmax.x);
- float y = rng.uniform(pmin.y, pmax.y);
- float z = 0;
- Matx31f pt(x, y, z);
- Mat pt_trans = R * pt + tvec;
- points[i] = Point3f(pt_trans.at<float>(0,0), pt_trans.at<float>(1,0), pt_trans.at<float>(2,0));
- }
- }
- }
- void generateCameraMatrix(Mat& cameraMatrix, RNG& rng)
- {
- const double fcMinVal = 1e-3;
- const double fcMaxVal = 100;
- cameraMatrix.create(3, 3, CV_64FC1);
- cameraMatrix.setTo(Scalar(0));
- cameraMatrix.at<double>(0,0) = rng.uniform(fcMinVal, fcMaxVal);
- cameraMatrix.at<double>(1,1) = rng.uniform(fcMinVal, fcMaxVal);
- cameraMatrix.at<double>(0,2) = rng.uniform(fcMinVal, fcMaxVal);
- cameraMatrix.at<double>(1,2) = rng.uniform(fcMinVal, fcMaxVal);
- cameraMatrix.at<double>(2,2) = 1;
- }
- void generateDistCoeffs(Mat& distCoeffs, RNG& rng)
- {
- distCoeffs = Mat::zeros(4, 1, CV_64FC1);
- for (int i = 0; i < 3; i++)
- distCoeffs.at<double>(i,0) = rng.uniform(0.0, 1.0e-6);
- }
- virtual bool runTest(RNG& rng, int mode, int method, const vector<Point3f>& points, double& errorTrans, double& errorRot)
- {
- if ((!planar && method == SOLVEPNP_IPPE) || method == SOLVEPNP_IPPE_SQUARE)
- {
- return true;
- }
- Mat rvec, tvec;
- vector<int> inliers;
- Mat trueRvec, trueTvec;
- Mat intrinsics, distCoeffs;
- generateCameraMatrix(intrinsics, rng);
- //UPnP is mapped to EPnP
- //Uncomment this when UPnP is fixed
- // if (method == SOLVEPNP_UPNP)
- // {
- // intrinsics.at<double>(1,1) = intrinsics.at<double>(0,0);
- // }
- if (mode == 0)
- {
- distCoeffs = Mat::zeros(4, 1, CV_64FC1);
- }
- else
- {
- generateDistCoeffs(distCoeffs, rng);
- }
- generatePose(points, trueRvec, trueTvec, rng);
- vector<Point2f> projectedPoints;
- projectedPoints.resize(points.size());
- projectPoints(points, trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints);
- for (size_t i = 0; i < projectedPoints.size(); i++)
- {
- if (i % 20 == 0)
- {
- projectedPoints[i] = projectedPoints[rng.uniform(0,(int)points.size()-1)];
- }
- }
- solvePnPRansac(points, projectedPoints, intrinsics, distCoeffs, rvec, tvec, false, pointsCount, 0.5f, 0.99, inliers, method);
- bool isTestSuccess = inliers.size() >= points.size()*0.95;
- double rvecDiff = cvtest::norm(rvec, trueRvec, NORM_L2), tvecDiff = cvtest::norm(tvec, trueTvec, NORM_L2);
- isTestSuccess = isTestSuccess && rvecDiff < eps[method] && tvecDiff < eps[method];
- errorTrans = tvecDiff;
- errorRot = rvecDiff;
- return isTestSuccess;
- }
- virtual void run(int)
- {
- ts->set_failed_test_info(cvtest::TS::OK);
- vector<Point3f> points, points_dls;
- points.resize(static_cast<size_t>(pointsCount));
- if (planar || planarTag)
- {
- generatePlanarPointCloud(points);
- }
- else
- {
- generate3DPointCloud(points);
- }
- RNG& rng = ts->get_rng();
- for (int mode = 0; mode < 2; mode++)
- {
- for (int method = 0; method < SOLVEPNP_MAX_COUNT; method++)
- {
- //To get the same input for each methods
- RNG rngCopy = rng;
- std::vector<double> vec_errorTrans, vec_errorRot;
- vec_errorTrans.reserve(static_cast<size_t>(totalTestsCount));
- vec_errorRot.reserve(static_cast<size_t>(totalTestsCount));
- int successfulTestsCount = 0;
- for (int testIndex = 0; testIndex < totalTestsCount; testIndex++)
- {
- double errorTrans, errorRot;
- if (runTest(rngCopy, mode, method, points, errorTrans, errorRot))
- {
- successfulTestsCount++;
- }
- vec_errorTrans.push_back(errorTrans);
- vec_errorRot.push_back(errorRot);
- }
- double maxErrorTrans = getMax(vec_errorTrans);
- double maxErrorRot = getMax(vec_errorRot);
- double meanErrorTrans = getMean(vec_errorTrans);
- double meanErrorRot = getMean(vec_errorRot);
- double medianErrorTrans = getMedian(vec_errorTrans);
- double medianErrorRot = getMedian(vec_errorRot);
- if (successfulTestsCount < 0.7*totalTestsCount)
- {
- ts->printf(cvtest::TS::LOG, "Invalid accuracy for %s, failed %d tests from %d, %s, "
- "maxErrT: %f, maxErrR: %f, "
- "meanErrT: %f, meanErrR: %f, "
- "medErrT: %f, medErrR: %f\n",
- printMethod(method).c_str(), totalTestsCount - successfulTestsCount, totalTestsCount, printMode(mode).c_str(),
- maxErrorTrans, maxErrorRot, meanErrorTrans, meanErrorRot, medianErrorTrans, medianErrorRot);
- ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
- }
- cout << "mode: " << printMode(mode) << ", method: " << printMethod(method) << " -> "
- << ((double)successfulTestsCount / totalTestsCount) * 100 << "%"
- << " (maxErrT: " << maxErrorTrans << ", maxErrR: " << maxErrorRot
- << ", meanErrT: " << meanErrorTrans << ", meanErrR: " << meanErrorRot
- << ", medErrT: " << medianErrorTrans << ", medErrR: " << medianErrorRot << ")" << endl;
- double transThres, rotThresh;
- findThreshold(vec_errorTrans, vec_errorRot, 0.7, transThres, rotThresh);
- cout << "approximate translation threshold for 0.7: " << transThres
- << ", approximate rotation threshold for 0.7: " << rotThresh << endl;
- }
- cout << endl;
- }
- }
- std::string printMode(int mode)
- {
- switch (mode) {
- case 0:
- return "no distortion";
- case 1:
- default:
- return "distorsion";
- }
- }
- double eps[SOLVEPNP_MAX_COUNT];
- int totalTestsCount;
- int pointsCount;
- bool planar;
- bool planarTag;
- };
- class CV_solvePnP_Test : public CV_solvePnPRansac_Test
- {
- public:
- CV_solvePnP_Test(bool planar_=false, bool planarTag_=false) : CV_solvePnPRansac_Test(planar_, planarTag_)
- {
- eps[SOLVEPNP_ITERATIVE] = 1.0e-6;
- eps[SOLVEPNP_EPNP] = 1.0e-6;
- eps[SOLVEPNP_P3P] = 2.0e-4;
- eps[SOLVEPNP_AP3P] = 1.0e-4;
- eps[SOLVEPNP_DLS] = 1.0e-6; //DLS is remapped to EPnP, so we use the same threshold
- eps[SOLVEPNP_UPNP] = 1.0e-6; //UPnP is remapped to EPnP, so we use the same threshold
- eps[SOLVEPNP_IPPE] = 1.0e-6;
- eps[SOLVEPNP_IPPE_SQUARE] = 1.0e-6;
- eps[SOLVEPNP_SQPNP] = 1.0e-6;
- totalTestsCount = 1000;
- if (planar || planarTag)
- {
- if (planarTag)
- {
- pointsCount = 4;
- }
- else
- {
- pointsCount = 30;
- }
- }
- else
- {
- pointsCount = 500;
- }
- }
- ~CV_solvePnP_Test() {}
- protected:
- virtual bool runTest(RNG& rng, int mode, int method, const vector<Point3f>& points, double& errorTrans, double& errorRot)
- {
- if ((!planar && (method == SOLVEPNP_IPPE || method == SOLVEPNP_IPPE_SQUARE)) ||
- (!planarTag && method == SOLVEPNP_IPPE_SQUARE))
- {
- errorTrans = -1;
- errorRot = -1;
- //SOLVEPNP_IPPE and SOLVEPNP_IPPE_SQUARE need planar object
- return true;
- }
- //Tune thresholds...
- double epsilon_trans[SOLVEPNP_MAX_COUNT];
- memcpy(epsilon_trans, eps, SOLVEPNP_MAX_COUNT * sizeof(*epsilon_trans));
- double epsilon_rot[SOLVEPNP_MAX_COUNT];
- memcpy(epsilon_rot, eps, SOLVEPNP_MAX_COUNT * sizeof(*epsilon_rot));
- if (planar)
- {
- if (mode == 0)
- {
- epsilon_trans[SOLVEPNP_EPNP] = 5.0e-3;
- epsilon_trans[SOLVEPNP_DLS] = 5.0e-3;
- epsilon_trans[SOLVEPNP_UPNP] = 5.0e-3;
- epsilon_rot[SOLVEPNP_EPNP] = 5.0e-3;
- epsilon_rot[SOLVEPNP_DLS] = 5.0e-3;
- epsilon_rot[SOLVEPNP_UPNP] = 5.0e-3;
- }
- else
- {
- epsilon_trans[SOLVEPNP_ITERATIVE] = 1e-4;
- epsilon_trans[SOLVEPNP_EPNP] = 5e-3;
- epsilon_trans[SOLVEPNP_DLS] = 5e-3;
- epsilon_trans[SOLVEPNP_UPNP] = 5e-3;
- epsilon_trans[SOLVEPNP_P3P] = 1e-4;
- epsilon_trans[SOLVEPNP_AP3P] = 1e-4;
- epsilon_trans[SOLVEPNP_IPPE] = 1e-4;
- epsilon_trans[SOLVEPNP_IPPE_SQUARE] = 1e-4;
- epsilon_rot[SOLVEPNP_ITERATIVE] = 1e-4;
- epsilon_rot[SOLVEPNP_EPNP] = 5e-3;
- epsilon_rot[SOLVEPNP_DLS] = 5e-3;
- epsilon_rot[SOLVEPNP_UPNP] = 5e-3;
- epsilon_rot[SOLVEPNP_P3P] = 1e-4;
- epsilon_rot[SOLVEPNP_AP3P] = 1e-4;
- epsilon_rot[SOLVEPNP_IPPE] = 1e-4;
- epsilon_rot[SOLVEPNP_IPPE_SQUARE] = 1e-4;
- }
- }
- Mat trueRvec, trueTvec;
- Mat intrinsics, distCoeffs;
- generateCameraMatrix(intrinsics, rng);
- //UPnP is mapped to EPnP
- //Uncomment this when UPnP is fixed
- // if (method == SOLVEPNP_UPNP)
- // {
- // intrinsics.at<double>(1,1) = intrinsics.at<double>(0,0);
- // }
- if (mode == 0)
- {
- distCoeffs = Mat::zeros(4, 1, CV_64FC1);
- }
- else
- {
- generateDistCoeffs(distCoeffs, rng);
- }
- generatePose(points, trueRvec, trueTvec, rng);
- std::vector<Point3f> opoints;
- switch(method)
- {
- case SOLVEPNP_P3P:
- case SOLVEPNP_AP3P:
- opoints = std::vector<Point3f>(points.begin(), points.begin()+4);
- break;
- //UPnP is mapped to EPnP
- //Uncomment this when UPnP is fixed
- // case SOLVEPNP_UPNP:
- // if (points.size() > 50)
- // {
- // opoints = std::vector<Point3f>(points.begin(), points.begin()+50);
- // }
- // else
- // {
- // opoints = points;
- // }
- // break;
- default:
- opoints = points;
- break;
- }
- vector<Point2f> projectedPoints;
- projectedPoints.resize(opoints.size());
- projectPoints(opoints, trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints);
- Mat rvec, tvec;
- bool isEstimateSuccess = solvePnP(opoints, projectedPoints, intrinsics, distCoeffs, rvec, tvec, false, method);
- if (!isEstimateSuccess)
- {
- return false;
- }
- double rvecDiff = cvtest::norm(rvec, trueRvec, NORM_L2), tvecDiff = cvtest::norm(tvec, trueTvec, NORM_L2);
- bool isTestSuccess = rvecDiff < epsilon_rot[method] && tvecDiff < epsilon_trans[method];
- errorTrans = tvecDiff;
- errorRot = rvecDiff;
- return isTestSuccess;
- }
- };
- class CV_solveP3P_Test : public CV_solvePnPRansac_Test
- {
- public:
- CV_solveP3P_Test()
- {
- eps[SOLVEPNP_P3P] = 2.0e-4;
- eps[SOLVEPNP_AP3P] = 1.0e-4;
- totalTestsCount = 1000;
- }
- ~CV_solveP3P_Test() {}
- protected:
- virtual bool runTest(RNG& rng, int mode, int method, const vector<Point3f>& points, double& errorTrans, double& errorRot)
- {
- std::vector<Mat> rvecs, tvecs;
- Mat trueRvec, trueTvec;
- Mat intrinsics, distCoeffs;
- generateCameraMatrix(intrinsics, rng);
- if (mode == 0)
- {
- distCoeffs = Mat::zeros(4, 1, CV_64FC1);
- }
- else
- {
- generateDistCoeffs(distCoeffs, rng);
- }
- generatePose(points, trueRvec, trueTvec, rng);
- std::vector<Point3f> opoints;
- opoints = std::vector<Point3f>(points.begin(), points.begin()+3);
- vector<Point2f> projectedPoints;
- projectedPoints.resize(opoints.size());
- projectPoints(opoints, trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints);
- int num_of_solutions = solveP3P(opoints, projectedPoints, intrinsics, distCoeffs, rvecs, tvecs, method);
- if (num_of_solutions != (int) rvecs.size() || num_of_solutions != (int) tvecs.size() || num_of_solutions == 0)
- {
- return false;
- }
- bool isTestSuccess = false;
- for (size_t i = 0; i < rvecs.size() && !isTestSuccess; i++) {
- double rvecDiff = cvtest::norm(rvecs[i], trueRvec, NORM_L2);
- double tvecDiff = cvtest::norm(tvecs[i], trueTvec, NORM_L2);
- isTestSuccess = rvecDiff < eps[method] && tvecDiff < eps[method];
- errorTrans = std::min(errorTrans, tvecDiff);
- errorRot = std::min(errorRot, rvecDiff);
- }
- return isTestSuccess;
- }
- virtual void run(int)
- {
- ts->set_failed_test_info(cvtest::TS::OK);
- vector<Point3f> points;
- points.resize(static_cast<size_t>(pointsCount));
- generate3DPointCloud(points);
- const int methodsCount = 2;
- int methods[] = {SOLVEPNP_P3P, SOLVEPNP_AP3P};
- RNG rng = ts->get_rng();
- for (int mode = 0; mode < 2; mode++)
- {
- //To get the same input for each methods
- RNG rngCopy = rng;
- for (int method = 0; method < methodsCount; method++)
- {
- std::vector<double> vec_errorTrans, vec_errorRot;
- vec_errorTrans.reserve(static_cast<size_t>(totalTestsCount));
- vec_errorRot.reserve(static_cast<size_t>(totalTestsCount));
- int successfulTestsCount = 0;
- for (int testIndex = 0; testIndex < totalTestsCount; testIndex++)
- {
- double errorTrans = 0, errorRot = 0;
- if (runTest(rngCopy, mode, methods[method], points, errorTrans, errorRot))
- {
- successfulTestsCount++;
- }
- vec_errorTrans.push_back(errorTrans);
- vec_errorRot.push_back(errorRot);
- }
- double maxErrorTrans = getMax(vec_errorTrans);
- double maxErrorRot = getMax(vec_errorRot);
- double meanErrorTrans = getMean(vec_errorTrans);
- double meanErrorRot = getMean(vec_errorRot);
- double medianErrorTrans = getMedian(vec_errorTrans);
- double medianErrorRot = getMedian(vec_errorRot);
- if (successfulTestsCount < 0.7*totalTestsCount)
- {
- ts->printf(cvtest::TS::LOG, "Invalid accuracy for %s, failed %d tests from %d, %s, "
- "maxErrT: %f, maxErrR: %f, "
- "meanErrT: %f, meanErrR: %f, "
- "medErrT: %f, medErrR: %f\n",
- printMethod(methods[method]).c_str(), totalTestsCount - successfulTestsCount, totalTestsCount, printMode(mode).c_str(),
- maxErrorTrans, maxErrorRot, meanErrorTrans, meanErrorRot, medianErrorTrans, medianErrorRot);
- ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
- }
- cout << "mode: " << printMode(mode) << ", method: " << printMethod(methods[method]) << " -> "
- << ((double)successfulTestsCount / totalTestsCount) * 100 << "%"
- << " (maxErrT: " << maxErrorTrans << ", maxErrR: " << maxErrorRot
- << ", meanErrT: " << meanErrorTrans << ", meanErrR: " << meanErrorRot
- << ", medErrT: " << medianErrorTrans << ", medErrR: " << medianErrorRot << ")" << endl;
- double transThres, rotThresh;
- findThreshold(vec_errorTrans, vec_errorRot, 0.7, transThres, rotThresh);
- cout << "approximate translation threshold for 0.7: " << transThres
- << ", approximate rotation threshold for 0.7: " << rotThresh << endl;
- }
- }
- }
- };
- TEST(Calib3d_SolveP3P, accuracy) { CV_solveP3P_Test test; test.safe_run();}
- TEST(Calib3d_SolvePnPRansac, accuracy) { CV_solvePnPRansac_Test test; test.safe_run(); }
- TEST(Calib3d_SolvePnP, accuracy) { CV_solvePnP_Test test; test.safe_run(); }
- TEST(Calib3d_SolvePnP, accuracy_planar) { CV_solvePnP_Test test(true); test.safe_run(); }
- TEST(Calib3d_SolvePnP, accuracy_planar_tag) { CV_solvePnP_Test test(true, true); test.safe_run(); }
- TEST(Calib3d_SolvePnPRansac, concurrency)
- {
- int count = 7*13;
- Mat object(1, count, CV_32FC3);
- randu(object, -100, 100);
- Mat camera_mat(3, 3, CV_32FC1);
- randu(camera_mat, 0.5, 1);
- camera_mat.at<float>(0, 1) = 0.f;
- camera_mat.at<float>(1, 0) = 0.f;
- camera_mat.at<float>(2, 0) = 0.f;
- camera_mat.at<float>(2, 1) = 0.f;
- camera_mat.at<float>(2, 2) = 1.f;
- Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0));
- vector<cv::Point2f> image_vec;
- Mat rvec_gold(1, 3, CV_32FC1);
- randu(rvec_gold, 0, 1);
- Mat tvec_gold(1, 3, CV_32FC1);
- randu(tvec_gold, 0, 1);
- projectPoints(object, rvec_gold, tvec_gold, camera_mat, dist_coef, image_vec);
- Mat image(1, count, CV_32FC2, &image_vec[0]);
- Mat rvec1, rvec2;
- Mat tvec1, tvec2;
- int threads = getNumThreads();
- {
- // limit concurrency to get deterministic result
- theRNG().state = 20121010;
- setNumThreads(1);
- solvePnPRansac(object, image, camera_mat, dist_coef, rvec1, tvec1);
- }
- {
- setNumThreads(threads);
- Mat rvec;
- Mat tvec;
- // parallel executions
- for(int i = 0; i < 10; ++i)
- {
- cv::theRNG().state = 20121010;
- solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
- }
- }
- {
- // single thread again
- theRNG().state = 20121010;
- setNumThreads(1);
- solvePnPRansac(object, image, camera_mat, dist_coef, rvec2, tvec2);
- }
- double rnorm = cvtest::norm(rvec1, rvec2, NORM_INF);
- double tnorm = cvtest::norm(tvec1, tvec2, NORM_INF);
- EXPECT_LT(rnorm, 1e-6);
- EXPECT_LT(tnorm, 1e-6);
- }
- TEST(Calib3d_SolvePnPRansac, input_type)
- {
- const int numPoints = 10;
- Matx33d intrinsics(5.4794130238156129e+002, 0., 2.9835545700043139e+002, 0.,
- 5.4817724002728005e+002, 2.3062194051986233e+002, 0., 0., 1.);
- std::vector<cv::Point3f> points3d;
- std::vector<cv::Point2f> points2d;
- for (int i = 0; i < numPoints; i+=2)
- {
- points3d.push_back(cv::Point3i(5+i, 3, 2));
- points3d.push_back(cv::Point3i(5+i, 3+i, 2+i));
- points2d.push_back(cv::Point2i(0, i));
- points2d.push_back(cv::Point2i(-i, i));
- }
- Mat R1, t1, R2, t2, R3, t3, R4, t4;
- EXPECT_TRUE(solvePnPRansac(points3d, points2d, intrinsics, cv::Mat(), R1, t1));
- Mat points3dMat(points3d);
- Mat points2dMat(points2d);
- EXPECT_TRUE(solvePnPRansac(points3dMat, points2dMat, intrinsics, cv::Mat(), R2, t2));
- points3dMat = points3dMat.reshape(3, 1);
- points2dMat = points2dMat.reshape(2, 1);
- EXPECT_TRUE(solvePnPRansac(points3dMat, points2dMat, intrinsics, cv::Mat(), R3, t3));
- points3dMat = points3dMat.reshape(1, numPoints);
- points2dMat = points2dMat.reshape(1, numPoints);
- EXPECT_TRUE(solvePnPRansac(points3dMat, points2dMat, intrinsics, cv::Mat(), R4, t4));
- EXPECT_LE(cvtest::norm(R1, R2, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(t1, t2, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(R1, R3, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(t1, t3, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(R1, R4, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(t1, t4, NORM_INF), 1e-6);
- }
- TEST(Calib3d_SolvePnPRansac, double_support)
- {
- Matx33d intrinsics(5.4794130238156129e+002, 0., 2.9835545700043139e+002, 0.,
- 5.4817724002728005e+002, 2.3062194051986233e+002, 0., 0., 1.);
- std::vector<cv::Point3d> points3d;
- std::vector<cv::Point2d> points2d;
- std::vector<cv::Point3f> points3dF;
- std::vector<cv::Point2f> points2dF;
- for (int i = 0; i < 10 ; i+=2)
- {
- points3d.push_back(cv::Point3d(5+i, 3, 2));
- points3dF.push_back(cv::Point3f(static_cast<float>(5+i), 3, 2));
- points3d.push_back(cv::Point3d(5+i, 3+i, 2+i));
- points3dF.push_back(cv::Point3f(static_cast<float>(5+i), static_cast<float>(3+i), static_cast<float>(2+i)));
- points2d.push_back(cv::Point2d(0, i));
- points2dF.push_back(cv::Point2f(0, static_cast<float>(i)));
- points2d.push_back(cv::Point2d(-i, i));
- points2dF.push_back(cv::Point2f(static_cast<float>(-i), static_cast<float>(i)));
- }
- Mat R, t, RF, tF;
- vector<int> inliers;
- solvePnPRansac(points3dF, points2dF, intrinsics, cv::Mat(), RF, tF, true, 100, 8.f, 0.999, inliers, cv::SOLVEPNP_P3P);
- solvePnPRansac(points3d, points2d, intrinsics, cv::Mat(), R, t, true, 100, 8.f, 0.999, inliers, cv::SOLVEPNP_P3P);
- EXPECT_LE(cvtest::norm(R, Mat_<double>(RF), NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(t, Mat_<double>(tF), NORM_INF), 1e-3);
- }
- TEST(Calib3d_SolvePnPRansac, bad_input_points_19253)
- {
- // with this specific data
- // when computing the final pose using points in the consensus set with SOLVEPNP_ITERATIVE and solvePnP()
- // an exception is thrown from solvePnP because there are 5 non-coplanar 3D points and the DLT algorithm needs at least 6 non-coplanar 3D points
- // with PR #19253 we choose to return true, with the pose estimated from the MSS stage instead of throwing the exception
- float pts2d_[] = {
- -5.38358629e-01f, -5.09638414e-02f,
- -5.07192254e-01f, -2.20743284e-01f,
- -5.43107152e-01f, -4.90474701e-02f,
- -5.54325163e-01f, -1.86715424e-01f,
- -5.59334219e-01f, -4.01909500e-02f,
- -5.43504596e-01f, -4.61776406e-02f
- };
- Mat pts2d(6, 2, CV_32FC1, pts2d_);
- float pts3d_[] = {
- -3.01153604e-02f, -1.55665115e-01f, 4.50000018e-01f,
- 4.27827090e-01f, 4.28645730e-01f, 1.08600008e+00f,
- -3.14165242e-02f, -1.52656138e-01f, 4.50000018e-01f,
- -1.46217480e-01f, 5.57961613e-02f, 7.17000008e-01f,
- -4.89348806e-02f, -1.38795510e-01f, 4.47000027e-01f,
- -3.13065052e-02f, -1.52636901e-01f, 4.51000035e-01f
- };
- Mat pts3d(6, 3, CV_32FC1, pts3d_);
- Mat camera_mat = Mat::eye(3, 3, CV_64FC1);
- Mat rvec, tvec;
- vector<int> inliers;
- // solvePnPRansac will return true with 5 inliers, which means the result is from MSS stage.
- bool result = solvePnPRansac(pts3d, pts2d, camera_mat, noArray(), rvec, tvec, false, 100, 4.f / 460.f, 0.99, inliers);
- EXPECT_EQ(inliers.size(), size_t(5));
- EXPECT_TRUE(result);
- }
- TEST(Calib3d_SolvePnP, input_type)
- {
- Matx33d intrinsics(5.4794130238156129e+002, 0., 2.9835545700043139e+002, 0.,
- 5.4817724002728005e+002, 2.3062194051986233e+002, 0., 0., 1.);
- vector<Point3d> points3d_;
- vector<Point3f> points3dF_;
- //Cube
- const float l = -0.1f;
- //Front face
- points3d_.push_back(Point3d(-l, -l, -l));
- points3dF_.push_back(Point3f(-l, -l, -l));
- points3d_.push_back(Point3d(l, -l, -l));
- points3dF_.push_back(Point3f(l, -l, -l));
- points3d_.push_back(Point3d(l, l, -l));
- points3dF_.push_back(Point3f(l, l, -l));
- points3d_.push_back(Point3d(-l, l, -l));
- points3dF_.push_back(Point3f(-l, l, -l));
- //Back face
- points3d_.push_back(Point3d(-l, -l, l));
- points3dF_.push_back(Point3f(-l, -l, l));
- points3d_.push_back(Point3d(l, -l, l));
- points3dF_.push_back(Point3f(l, -l, l));
- points3d_.push_back(Point3d(l, l, l));
- points3dF_.push_back(Point3f(l, l, l));
- points3d_.push_back(Point3d(-l, l, l));
- points3dF_.push_back(Point3f(-l, l, l));
- Mat trueRvec = (Mat_<double>(3,1) << 0.1, -0.25, 0.467);
- Mat trueTvec = (Mat_<double>(3,1) << -0.21, 0.12, 0.746);
- for (int method = 0; method < SOLVEPNP_MAX_COUNT; method++)
- {
- vector<Point3d> points3d;
- vector<Point2d> points2d;
- vector<Point3f> points3dF;
- vector<Point2f> points2dF;
- if (method == SOLVEPNP_IPPE || method == SOLVEPNP_IPPE_SQUARE)
- {
- const float tagSize_2 = 0.05f / 2;
- points3d.push_back(Point3d(-tagSize_2, tagSize_2, 0));
- points3d.push_back(Point3d( tagSize_2, tagSize_2, 0));
- points3d.push_back(Point3d( tagSize_2, -tagSize_2, 0));
- points3d.push_back(Point3d(-tagSize_2, -tagSize_2, 0));
- points3dF.push_back(Point3f(-tagSize_2, tagSize_2, 0));
- points3dF.push_back(Point3f( tagSize_2, tagSize_2, 0));
- points3dF.push_back(Point3f( tagSize_2, -tagSize_2, 0));
- points3dF.push_back(Point3f(-tagSize_2, -tagSize_2, 0));
- }
- else if (method == SOLVEPNP_P3P || method == SOLVEPNP_AP3P)
- {
- points3d = vector<Point3d>(points3d_.begin(), points3d_.begin()+4);
- points3dF = vector<Point3f>(points3dF_.begin(), points3dF_.begin()+4);
- }
- else
- {
- points3d = points3d_;
- points3dF = points3dF_;
- }
- projectPoints(points3d, trueRvec, trueTvec, intrinsics, noArray(), points2d);
- projectPoints(points3dF, trueRvec, trueTvec, intrinsics, noArray(), points2dF);
- //solvePnP
- {
- Mat R, t, RF, tF;
- solvePnP(points3dF, points2dF, Matx33f(intrinsics), Mat(), RF, tF, false, method);
- solvePnP(points3d, points2d, intrinsics, Mat(), R, t, false, method);
- //By default rvec and tvec must be returned in double precision
- EXPECT_EQ(RF.type(), tF.type());
- EXPECT_EQ(RF.type(), CV_64FC1);
- EXPECT_EQ(R.type(), t.type());
- EXPECT_EQ(R.type(), CV_64FC1);
- EXPECT_LE(cvtest::norm(R, RF, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(t, tF, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, RF, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, tF, NORM_INF), 1e-3);
- }
- {
- Mat R1, t1, R2, t2;
- solvePnP(points3dF, points2d, intrinsics, Mat(), R1, t1, false, method);
- solvePnP(points3d, points2dF, intrinsics, Mat(), R2, t2, false, method);
- //By default rvec and tvec must be returned in double precision
- EXPECT_EQ(R1.type(), t1.type());
- EXPECT_EQ(R1.type(), CV_64FC1);
- EXPECT_EQ(R2.type(), t2.type());
- EXPECT_EQ(R2.type(), CV_64FC1);
- EXPECT_LE(cvtest::norm(R1, R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(t1, t2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R1, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t2, NORM_INF), 1e-3);
- }
- {
- Mat R1(3,1,CV_32FC1), t1(3,1,CV_64FC1);
- Mat R2(3,1,CV_64FC1), t2(3,1,CV_32FC1);
- solvePnP(points3dF, points2d, intrinsics, Mat(), R1, t1, false, method);
- solvePnP(points3d, points2dF, intrinsics, Mat(), R2, t2, false, method);
- //If not null, rvec and tvec must be returned in the same precision
- EXPECT_EQ(R1.type(), CV_32FC1);
- EXPECT_EQ(t1.type(), CV_64FC1);
- EXPECT_EQ(R2.type(), CV_64FC1);
- EXPECT_EQ(t2.type(), CV_32FC1);
- EXPECT_LE(cvtest::norm(Mat_<double>(R1), R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(t1, Mat_<double>(t2), NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, Mat_<double>(R1), NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, Mat_<double>(t2), NORM_INF), 1e-3);
- }
- {
- Matx31f R1, t2;
- Matx31d R2, t1;
- solvePnP(points3dF, points2d, intrinsics, Mat(), R1, t1, false, method);
- solvePnP(points3d, points2dF, intrinsics, Mat(), R2, t2, false, method);
- Matx31d R1d(R1(0), R1(1), R1(2));
- Matx31d t2d(t2(0), t2(1), t2(2));
- EXPECT_LE(cvtest::norm(R1d, R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(t1, t2d, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R1d, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t2d, NORM_INF), 1e-3);
- }
- //solvePnPGeneric
- {
- vector<Mat> Rs, ts, RFs, tFs;
- int res1 = solvePnPGeneric(points3dF, points2dF, Matx33f(intrinsics), Mat(), RFs, tFs, false, (SolvePnPMethod)method);
- int res2 = solvePnPGeneric(points3d, points2d, intrinsics, Mat(), Rs, ts, false, (SolvePnPMethod)method);
- EXPECT_GT(res1, 0);
- EXPECT_GT(res2, 0);
- Mat R = Rs.front(), t = ts.front(), RF = RFs.front(), tF = tFs.front();
- //By default rvecs and tvecs must be returned in double precision
- EXPECT_EQ(RF.type(), tF.type());
- EXPECT_EQ(RF.type(), CV_64FC1);
- EXPECT_EQ(R.type(), t.type());
- EXPECT_EQ(R.type(), CV_64FC1);
- EXPECT_LE(cvtest::norm(R, RF, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(t, tF, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, RF, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, tF, NORM_INF), 1e-3);
- }
- {
- vector<Mat> R1s, t1s, R2s, t2s;
- int res1 = solvePnPGeneric(points3dF, points2d, intrinsics, Mat(), R1s, t1s, false, (SolvePnPMethod)method);
- int res2 = solvePnPGeneric(points3d, points2dF, intrinsics, Mat(), R2s, t2s, false, (SolvePnPMethod)method);
- EXPECT_GT(res1, 0);
- EXPECT_GT(res2, 0);
- Mat R1 = R1s.front(), t1 = t1s.front(), R2 = R2s.front(), t2 = t2s.front();
- //By default rvecs and tvecs must be returned in double precision
- EXPECT_EQ(R1.type(), t1.type());
- EXPECT_EQ(R1.type(), CV_64FC1);
- EXPECT_EQ(R2.type(), t2.type());
- EXPECT_EQ(R2.type(), CV_64FC1);
- EXPECT_LE(cvtest::norm(R1, R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(t1, t2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R1, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t2, NORM_INF), 1e-3);
- }
- {
- vector<Mat_<float> > R1s, t2s;
- vector<Mat_<double> > R2s, t1s;
- int res1 = solvePnPGeneric(points3dF, points2d, intrinsics, Mat(), R1s, t1s, false, (SolvePnPMethod)method);
- int res2 = solvePnPGeneric(points3d, points2dF, intrinsics, Mat(), R2s, t2s, false, (SolvePnPMethod)method);
- EXPECT_GT(res1, 0);
- EXPECT_GT(res2, 0);
- Mat R1 = R1s.front(), t1 = t1s.front();
- Mat R2 = R2s.front(), t2 = t2s.front();
- //If not null, rvecs and tvecs must be returned in the same precision
- EXPECT_EQ(R1.type(), CV_32FC1);
- EXPECT_EQ(t1.type(), CV_64FC1);
- EXPECT_EQ(R2.type(), CV_64FC1);
- EXPECT_EQ(t2.type(), CV_32FC1);
- EXPECT_LE(cvtest::norm(Mat_<double>(R1), R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(t1, Mat_<double>(t2), NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, Mat_<double>(R1), NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, Mat_<double>(t2), NORM_INF), 1e-3);
- }
- {
- vector<Matx31f> R1s, t2s;
- vector<Matx31d> R2s, t1s;
- int res1 = solvePnPGeneric(points3dF, points2d, intrinsics, Mat(), R1s, t1s, false, (SolvePnPMethod)method);
- int res2 = solvePnPGeneric(points3d, points2dF, intrinsics, Mat(), R2s, t2s, false, (SolvePnPMethod)method);
- EXPECT_GT(res1, 0);
- EXPECT_GT(res2, 0);
- Matx31f R1 = R1s.front(), t2 = t2s.front();
- Matx31d R2 = R2s.front(), t1 = t1s.front();
- Matx31d R1d(R1(0), R1(1), R1(2)), t2d(t2(0), t2(1), t2(2));
- EXPECT_LE(cvtest::norm(R1d, R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(t1, t2d, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R1d, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t2d, NORM_INF), 1e-3);
- }
- if (method == SOLVEPNP_P3P || method == SOLVEPNP_AP3P)
- {
- //solveP3P
- {
- vector<Mat> Rs, ts, RFs, tFs;
- int res1 = solveP3P(points3dF, points2dF, Matx33f(intrinsics), Mat(), RFs, tFs, (SolvePnPMethod)method);
- int res2 = solveP3P(points3d, points2d, intrinsics, Mat(), Rs, ts, (SolvePnPMethod)method);
- EXPECT_GT(res1, 0);
- EXPECT_GT(res2, 0);
- Mat R = Rs.front(), t = ts.front(), RF = RFs.front(), tF = tFs.front();
- //By default rvecs and tvecs must be returned in double precision
- EXPECT_EQ(RF.type(), tF.type());
- EXPECT_EQ(RF.type(), CV_64FC1);
- EXPECT_EQ(R.type(), t.type());
- EXPECT_EQ(R.type(), CV_64FC1);
- EXPECT_LE(cvtest::norm(R, RF, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(t, tF, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, RF, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, tF, NORM_INF), 1e-3);
- }
- {
- vector<Mat> R1s, t1s, R2s, t2s;
- int res1 = solveP3P(points3dF, points2d, intrinsics, Mat(), R1s, t1s, (SolvePnPMethod)method);
- int res2 = solveP3P(points3d, points2dF, intrinsics, Mat(), R2s, t2s, (SolvePnPMethod)method);
- EXPECT_GT(res1, 0);
- EXPECT_GT(res2, 0);
- Mat R1 = R1s.front(), t1 = t1s.front(), R2 = R2s.front(), t2 = t2s.front();
- //By default rvecs and tvecs must be returned in double precision
- EXPECT_EQ(R1.type(), t1.type());
- EXPECT_EQ(R1.type(), CV_64FC1);
- EXPECT_EQ(R2.type(), t2.type());
- EXPECT_EQ(R2.type(), CV_64FC1);
- EXPECT_LE(cvtest::norm(R1, R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(t1, t2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R1, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t2, NORM_INF), 1e-3);
- }
- {
- vector<Mat_<float> > R1s, t2s;
- vector<Mat_<double> > R2s, t1s;
- int res1 = solveP3P(points3dF, points2d, intrinsics, Mat(), R1s, t1s, (SolvePnPMethod)method);
- int res2 = solveP3P(points3d, points2dF, intrinsics, Mat(), R2s, t2s, (SolvePnPMethod)method);
- EXPECT_GT(res1, 0);
- EXPECT_GT(res2, 0);
- Mat R1 = R1s.front(), t1 = t1s.front();
- Mat R2 = R2s.front(), t2 = t2s.front();
- //If not null, rvecs and tvecs must be returned in the same precision
- EXPECT_EQ(R1.type(), CV_32FC1);
- EXPECT_EQ(t1.type(), CV_64FC1);
- EXPECT_EQ(R2.type(), CV_64FC1);
- EXPECT_EQ(t2.type(), CV_32FC1);
- EXPECT_LE(cvtest::norm(Mat_<double>(R1), R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(t1, Mat_<double>(t2), NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, Mat_<double>(R1), NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, Mat_<double>(t2), NORM_INF), 1e-3);
- }
- {
- vector<Matx31f> R1s, t2s;
- vector<Matx31d> R2s, t1s;
- int res1 = solveP3P(points3dF, points2d, intrinsics, Mat(), R1s, t1s, (SolvePnPMethod)method);
- int res2 = solveP3P(points3d, points2dF, intrinsics, Mat(), R2s, t2s, (SolvePnPMethod)method);
- EXPECT_GT(res1, 0);
- EXPECT_GT(res2, 0);
- Matx31f R1 = R1s.front(), t2 = t2s.front();
- Matx31d R2 = R2s.front(), t1 = t1s.front();
- Matx31d R1d(R1(0), R1(1), R1(2)), t2d(t2(0), t2(1), t2(2));
- EXPECT_LE(cvtest::norm(R1d, R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(t1, t2d, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R1d, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t1, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueRvec, R2, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(trueTvec, t2d, NORM_INF), 1e-3);
- }
- }
- }
- }
- TEST(Calib3d_SolvePnP, translation)
- {
- Mat cameraIntrinsic = Mat::eye(3,3, CV_32FC1);
- vector<float> crvec;
- crvec.push_back(0.f);
- crvec.push_back(0.f);
- crvec.push_back(0.f);
- vector<float> ctvec;
- ctvec.push_back(100.f);
- ctvec.push_back(100.f);
- ctvec.push_back(0.f);
- vector<Point3f> p3d;
- p3d.push_back(Point3f(0,0,0));
- p3d.push_back(Point3f(0,0,10));
- p3d.push_back(Point3f(0,10,10));
- p3d.push_back(Point3f(10,10,10));
- p3d.push_back(Point3f(2,5,5));
- p3d.push_back(Point3f(-4,8,6));
- vector<Point2f> p2d;
- projectPoints(p3d, crvec, ctvec, cameraIntrinsic, noArray(), p2d);
- Mat rvec;
- Mat tvec;
- rvec =(Mat_<float>(3,1) << 0, 0, 0);
- tvec = (Mat_<float>(3,1) << 100, 100, 0);
- solvePnP(p3d, p2d, cameraIntrinsic, noArray(), rvec, tvec, true);
- EXPECT_TRUE(checkRange(rvec));
- EXPECT_TRUE(checkRange(tvec));
- rvec =(Mat_<double>(3,1) << 0, 0, 0);
- tvec = (Mat_<double>(3,1) << 100, 100, 0);
- solvePnP(p3d, p2d, cameraIntrinsic, noArray(), rvec, tvec, true);
- EXPECT_TRUE(checkRange(rvec));
- EXPECT_TRUE(checkRange(tvec));
- solvePnP(p3d, p2d, cameraIntrinsic, noArray(), rvec, tvec, false);
- EXPECT_TRUE(checkRange(rvec));
- EXPECT_TRUE(checkRange(tvec));
- }
- TEST(Calib3d_SolvePnP, iterativeInitialGuess3pts)
- {
- {
- Matx33d intrinsics(605.4, 0.0, 317.35,
- 0.0, 601.2, 242.63,
- 0.0, 0.0, 1.0);
- double L = 0.1;
- vector<Point3d> p3d;
- p3d.push_back(Point3d(-L, -L, 0.0));
- p3d.push_back(Point3d(L, -L, 0.0));
- p3d.push_back(Point3d(L, L, 0.0));
- Mat rvec_ground_truth = (Mat_<double>(3,1) << 0.3, -0.2, 0.75);
- Mat tvec_ground_truth = (Mat_<double>(3,1) << 0.15, -0.2, 1.5);
- vector<Point2d> p2d;
- projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d);
- Mat rvec_est = (Mat_<double>(3,1) << 0.2, -0.1, 0.6);
- Mat tvec_est = (Mat_<double>(3,1) << 0.05, -0.05, 1.0);
- solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, true, SOLVEPNP_ITERATIVE);
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est: " << rvec_est.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est: " << tvec_est.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
- EXPECT_EQ(rvec_est.type(), CV_64FC1);
- EXPECT_EQ(tvec_est.type(), CV_64FC1);
- }
- {
- Matx33f intrinsics(605.4f, 0.0f, 317.35f,
- 0.0f, 601.2f, 242.63f,
- 0.0f, 0.0f, 1.0f);
- float L = 0.1f;
- vector<Point3f> p3d;
- p3d.push_back(Point3f(-L, -L, 0.0f));
- p3d.push_back(Point3f(L, -L, 0.0f));
- p3d.push_back(Point3f(L, L, 0.0f));
- Mat rvec_ground_truth = (Mat_<float>(3,1) << -0.75f, 0.4f, 0.34f);
- Mat tvec_ground_truth = (Mat_<float>(3,1) << -0.15f, 0.35f, 1.58f);
- vector<Point2f> p2d;
- projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d);
- Mat rvec_est = (Mat_<float>(3,1) << -0.5f, 0.2f, 0.2f);
- Mat tvec_est = (Mat_<float>(3,1) << 0.0f, 0.2f, 1.0f);
- solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, true, SOLVEPNP_ITERATIVE);
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est: " << rvec_est.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est: " << tvec_est.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
- EXPECT_EQ(rvec_est.type(), CV_32FC1);
- EXPECT_EQ(tvec_est.type(), CV_32FC1);
- }
- }
- TEST(Calib3d_SolvePnP, iterativeInitialGuess)
- {
- {
- Matx33d intrinsics(605.4, 0.0, 317.35,
- 0.0, 601.2, 242.63,
- 0.0, 0.0, 1.0);
- double L = 0.1;
- vector<Point3d> p3d;
- p3d.push_back(Point3d(-L, -L, 0.0));
- p3d.push_back(Point3d(L, -L, 0.0));
- p3d.push_back(Point3d(L, L, 0.0));
- p3d.push_back(Point3d(-L, L, L/2));
- p3d.push_back(Point3d(0, 0, -L/2));
- Mat rvec_ground_truth = (Mat_<double>(3,1) << 0.3, -0.2, 0.75);
- Mat tvec_ground_truth = (Mat_<double>(3,1) << 0.15, -0.2, 1.5);
- vector<Point2d> p2d;
- projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d);
- Mat rvec_est = (Mat_<double>(3,1) << 0.1, -0.1, 0.1);
- Mat tvec_est = (Mat_<double>(3,1) << 0.0, -0.5, 1.0);
- solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, true, SOLVEPNP_ITERATIVE);
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est: " << rvec_est.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est: " << tvec_est.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
- EXPECT_EQ(rvec_est.type(), CV_64FC1);
- EXPECT_EQ(tvec_est.type(), CV_64FC1);
- }
- {
- Matx33f intrinsics(605.4f, 0.0f, 317.35f,
- 0.0f, 601.2f, 242.63f,
- 0.0f, 0.0f, 1.0f);
- float L = 0.1f;
- vector<Point3f> p3d;
- p3d.push_back(Point3f(-L, -L, 0.0f));
- p3d.push_back(Point3f(L, -L, 0.0f));
- p3d.push_back(Point3f(L, L, 0.0f));
- p3d.push_back(Point3f(-L, L, L/2));
- p3d.push_back(Point3f(0, 0, -L/2));
- Mat rvec_ground_truth = (Mat_<float>(3,1) << -0.75f, 0.4f, 0.34f);
- Mat tvec_ground_truth = (Mat_<float>(3,1) << -0.15f, 0.35f, 1.58f);
- vector<Point2f> p2d;
- projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d);
- Mat rvec_est = (Mat_<float>(3,1) << -0.1f, 0.1f, 0.1f);
- Mat tvec_est = (Mat_<float>(3,1) << 0.0f, 0.0f, 1.0f);
- solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, true, SOLVEPNP_ITERATIVE);
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est: " << rvec_est.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est: " << tvec_est.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
- EXPECT_EQ(rvec_est.type(), CV_32FC1);
- EXPECT_EQ(tvec_est.type(), CV_32FC1);
- }
- }
- TEST(Calib3d_SolvePnP, generic)
- {
- {
- Matx33d intrinsics(605.4, 0.0, 317.35,
- 0.0, 601.2, 242.63,
- 0.0, 0.0, 1.0);
- double L = 0.1;
- vector<Point3d> p3d_;
- p3d_.push_back(Point3d(-L, L, 0));
- p3d_.push_back(Point3d(L, L, 0));
- p3d_.push_back(Point3d(L, -L, 0));
- p3d_.push_back(Point3d(-L, -L, 0));
- p3d_.push_back(Point3d(-L, L, L/2));
- p3d_.push_back(Point3d(0, 0, -L/2));
- const int ntests = 10;
- for (int numTest = 0; numTest < ntests; numTest++)
- {
- Mat rvec_ground_truth;
- Mat tvec_ground_truth;
- generatePose(p3d_, rvec_ground_truth, tvec_ground_truth, theRNG());
- vector<Point2d> p2d_;
- projectPoints(p3d_, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d_);
- for (int method = 0; method < SOLVEPNP_MAX_COUNT; method++)
- {
- vector<Mat> rvecs_est;
- vector<Mat> tvecs_est;
- vector<Point3d> p3d;
- vector<Point2d> p2d;
- if (method == SOLVEPNP_P3P || method == SOLVEPNP_AP3P ||
- method == SOLVEPNP_IPPE || method == SOLVEPNP_IPPE_SQUARE)
- {
- p3d = vector<Point3d>(p3d_.begin(), p3d_.begin()+4);
- p2d = vector<Point2d>(p2d_.begin(), p2d_.begin()+4);
- }
- else
- {
- p3d = p3d_;
- p2d = p2d_;
- }
- vector<double> reprojectionErrors;
- solvePnPGeneric(p3d, p2d, intrinsics, noArray(), rvecs_est, tvecs_est, false, (SolvePnPMethod)method,
- noArray(), noArray(), reprojectionErrors);
- EXPECT_TRUE(!rvecs_est.empty());
- EXPECT_TRUE(rvecs_est.size() == tvecs_est.size() && tvecs_est.size() == reprojectionErrors.size());
- for (size_t i = 0; i < reprojectionErrors.size()-1; i++)
- {
- EXPECT_GE(reprojectionErrors[i+1], reprojectionErrors[i]);
- }
- bool isTestSuccess = false;
- for (size_t i = 0; i < rvecs_est.size() && !isTestSuccess; i++) {
- double rvecDiff = cvtest::norm(rvecs_est[i], rvec_ground_truth, NORM_L2);
- double tvecDiff = cvtest::norm(tvecs_est[i], tvec_ground_truth, NORM_L2);
- const double threshold = method == SOLVEPNP_P3P ? 1e-2 : 1e-4;
- isTestSuccess = rvecDiff < threshold && tvecDiff < threshold;
- }
- EXPECT_TRUE(isTestSuccess);
- }
- }
- }
- {
- Matx33f intrinsics(605.4f, 0.0f, 317.35f,
- 0.0f, 601.2f, 242.63f,
- 0.0f, 0.0f, 1.0f);
- float L = 0.1f;
- vector<Point3f> p3f_;
- p3f_.push_back(Point3f(-L, L, 0));
- p3f_.push_back(Point3f(L, L, 0));
- p3f_.push_back(Point3f(L, -L, 0));
- p3f_.push_back(Point3f(-L, -L, 0));
- p3f_.push_back(Point3f(-L, L, L/2));
- p3f_.push_back(Point3f(0, 0, -L/2));
- const int ntests = 10;
- for (int numTest = 0; numTest < ntests; numTest++)
- {
- Mat rvec_ground_truth;
- Mat tvec_ground_truth;
- generatePose(p3f_, rvec_ground_truth, tvec_ground_truth, theRNG());
- vector<Point2f> p2f_;
- projectPoints(p3f_, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2f_);
- for (int method = 0; method < SOLVEPNP_MAX_COUNT; method++)
- {
- vector<Mat> rvecs_est;
- vector<Mat> tvecs_est;
- vector<Point3f> p3f;
- vector<Point2f> p2f;
- if (method == SOLVEPNP_P3P || method == SOLVEPNP_AP3P ||
- method == SOLVEPNP_IPPE || method == SOLVEPNP_IPPE_SQUARE)
- {
- p3f = vector<Point3f>(p3f_.begin(), p3f_.begin()+4);
- p2f = vector<Point2f>(p2f_.begin(), p2f_.begin()+4);
- }
- else
- {
- p3f = p3f_;
- p2f = p2f_;
- }
- vector<double> reprojectionErrors;
- solvePnPGeneric(p3f, p2f, intrinsics, noArray(), rvecs_est, tvecs_est, false, (SolvePnPMethod)method,
- noArray(), noArray(), reprojectionErrors);
- EXPECT_TRUE(!rvecs_est.empty());
- EXPECT_TRUE(rvecs_est.size() == tvecs_est.size() && tvecs_est.size() == reprojectionErrors.size());
- for (size_t i = 0; i < reprojectionErrors.size()-1; i++)
- {
- EXPECT_GE(reprojectionErrors[i+1], reprojectionErrors[i]);
- }
- bool isTestSuccess = false;
- for (size_t i = 0; i < rvecs_est.size() && !isTestSuccess; i++) {
- double rvecDiff = cvtest::norm(rvecs_est[i], rvec_ground_truth, NORM_L2);
- double tvecDiff = cvtest::norm(tvecs_est[i], tvec_ground_truth, NORM_L2);
- const double threshold = method == SOLVEPNP_P3P ? 1e-2 : 1e-4;
- isTestSuccess = rvecDiff < threshold && tvecDiff < threshold;
- }
- EXPECT_TRUE(isTestSuccess);
- }
- }
- }
- }
- TEST(Calib3d_SolvePnP, refine3pts)
- {
- {
- Matx33d intrinsics(605.4, 0.0, 317.35,
- 0.0, 601.2, 242.63,
- 0.0, 0.0, 1.0);
- double L = 0.1;
- vector<Point3d> p3d;
- p3d.push_back(Point3d(-L, -L, 0.0));
- p3d.push_back(Point3d(L, -L, 0.0));
- p3d.push_back(Point3d(L, L, 0.0));
- Mat rvec_ground_truth = (Mat_<double>(3,1) << 0.3, -0.2, 0.75);
- Mat tvec_ground_truth = (Mat_<double>(3,1) << 0.15, -0.2, 1.5);
- vector<Point2d> p2d;
- projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d);
- {
- Mat rvec_est = (Mat_<double>(3,1) << 0.2, -0.1, 0.6);
- Mat tvec_est = (Mat_<double>(3,1) << 0.05, -0.05, 1.0);
- solvePnPRefineLM(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est);
- cout << "\nmethod: Levenberg-Marquardt" << endl;
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est: " << rvec_est.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est: " << tvec_est.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
- }
- {
- Mat rvec_est = (Mat_<double>(3,1) << 0.2, -0.1, 0.6);
- Mat tvec_est = (Mat_<double>(3,1) << 0.05, -0.05, 1.0);
- solvePnPRefineVVS(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est);
- cout << "\nmethod: Virtual Visual Servoing" << endl;
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est: " << rvec_est.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est: " << tvec_est.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
- }
- }
- {
- Matx33f intrinsics(605.4f, 0.0f, 317.35f,
- 0.0f, 601.2f, 242.63f,
- 0.0f, 0.0f, 1.0f);
- float L = 0.1f;
- vector<Point3f> p3d;
- p3d.push_back(Point3f(-L, -L, 0.0f));
- p3d.push_back(Point3f(L, -L, 0.0f));
- p3d.push_back(Point3f(L, L, 0.0f));
- Mat rvec_ground_truth = (Mat_<float>(3,1) << -0.75f, 0.4f, 0.34f);
- Mat tvec_ground_truth = (Mat_<float>(3,1) << -0.15f, 0.35f, 1.58f);
- vector<Point2f> p2d;
- projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d);
- {
- Mat rvec_est = (Mat_<float>(3,1) << -0.5f, 0.2f, 0.2f);
- Mat tvec_est = (Mat_<float>(3,1) << 0.0f, 0.2f, 1.0f);
- solvePnPRefineLM(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est);
- cout << "\nmethod: Levenberg-Marquardt" << endl;
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est: " << rvec_est.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est: " << tvec_est.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
- }
- {
- Mat rvec_est = (Mat_<float>(3,1) << -0.5f, 0.2f, 0.2f);
- Mat tvec_est = (Mat_<float>(3,1) << 0.0f, 0.2f, 1.0f);
- solvePnPRefineVVS(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est);
- cout << "\nmethod: Virtual Visual Servoing" << endl;
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est: " << rvec_est.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est: " << tvec_est.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
- }
- }
- }
- TEST(Calib3d_SolvePnP, refine)
- {
- //double
- {
- Matx33d intrinsics(605.4, 0.0, 317.35,
- 0.0, 601.2, 242.63,
- 0.0, 0.0, 1.0);
- double L = 0.1;
- vector<Point3d> p3d;
- p3d.push_back(Point3d(-L, -L, 0.0));
- p3d.push_back(Point3d(L, -L, 0.0));
- p3d.push_back(Point3d(L, L, 0.0));
- p3d.push_back(Point3d(-L, L, L/2));
- p3d.push_back(Point3d(0, 0, -L/2));
- Mat rvec_ground_truth = (Mat_<double>(3,1) << 0.3, -0.2, 0.75);
- Mat tvec_ground_truth = (Mat_<double>(3,1) << 0.15, -0.2, 1.5);
- vector<Point2d> p2d;
- projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d);
- {
- Mat rvec_est = (Mat_<double>(3,1) << 0.1, -0.1, 0.1);
- Mat tvec_est = (Mat_<double>(3,1) << 0.0, -0.5, 1.0);
- solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, true, SOLVEPNP_ITERATIVE);
- cout << "\nmethod: Levenberg-Marquardt (C API)" << endl;
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est: " << rvec_est.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est: " << tvec_est.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
- }
- {
- Mat rvec_est = (Mat_<double>(3,1) << 0.1, -0.1, 0.1);
- Mat tvec_est = (Mat_<double>(3,1) << 0.0, -0.5, 1.0);
- solvePnPRefineLM(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est);
- cout << "\nmethod: Levenberg-Marquardt (C++ API)" << endl;
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est: " << rvec_est.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est: " << tvec_est.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
- }
- {
- Mat rvec_est = (Mat_<double>(3,1) << 0.1, -0.1, 0.1);
- Mat tvec_est = (Mat_<double>(3,1) << 0.0, -0.5, 1.0);
- solvePnPRefineVVS(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est);
- cout << "\nmethod: Virtual Visual Servoing" << endl;
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est: " << rvec_est.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est: " << tvec_est.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
- }
- }
- //float
- {
- Matx33f intrinsics(605.4f, 0.0f, 317.35f,
- 0.0f, 601.2f, 242.63f,
- 0.0f, 0.0f, 1.0f);
- float L = 0.1f;
- vector<Point3f> p3d;
- p3d.push_back(Point3f(-L, -L, 0.0f));
- p3d.push_back(Point3f(L, -L, 0.0f));
- p3d.push_back(Point3f(L, L, 0.0f));
- p3d.push_back(Point3f(-L, L, L/2));
- p3d.push_back(Point3f(0, 0, -L/2));
- Mat rvec_ground_truth = (Mat_<float>(3,1) << -0.75f, 0.4f, 0.34f);
- Mat tvec_ground_truth = (Mat_<float>(3,1) << -0.15f, 0.35f, 1.58f);
- vector<Point2f> p2d;
- projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d);
- {
- Mat rvec_est = (Mat_<float>(3,1) << -0.1f, 0.1f, 0.1f);
- Mat tvec_est = (Mat_<float>(3,1) << 0.0f, 0.0f, 1.0f);
- solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, true, SOLVEPNP_ITERATIVE);
- cout << "\nmethod: Levenberg-Marquardt (C API)" << endl;
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est: " << rvec_est.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est: " << tvec_est.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
- }
- {
- Mat rvec_est = (Mat_<float>(3,1) << -0.1f, 0.1f, 0.1f);
- Mat tvec_est = (Mat_<float>(3,1) << 0.0f, 0.0f, 1.0f);
- solvePnPRefineLM(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est);
- cout << "\nmethod: Levenberg-Marquardt (C++ API)" << endl;
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est: " << rvec_est.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est: " << tvec_est.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
- }
- {
- Mat rvec_est = (Mat_<float>(3,1) << -0.1f, 0.1f, 0.1f);
- Mat tvec_est = (Mat_<float>(3,1) << 0.0f, 0.0f, 1.0f);
- solvePnPRefineVVS(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est);
- cout << "\nmethod: Virtual Visual Servoing" << endl;
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est: " << rvec_est.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est: " << tvec_est.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
- }
- }
- //refine after solvePnP
- {
- Matx33d intrinsics(605.4, 0.0, 317.35,
- 0.0, 601.2, 242.63,
- 0.0, 0.0, 1.0);
- double L = 0.1;
- vector<Point3d> p3d;
- p3d.push_back(Point3d(-L, -L, 0.0));
- p3d.push_back(Point3d(L, -L, 0.0));
- p3d.push_back(Point3d(L, L, 0.0));
- p3d.push_back(Point3d(-L, L, L/2));
- p3d.push_back(Point3d(0, 0, -L/2));
- Mat rvec_ground_truth = (Mat_<double>(3,1) << 0.3, -0.2, 0.75);
- Mat tvec_ground_truth = (Mat_<double>(3,1) << 0.15, -0.2, 1.5);
- vector<Point2d> p2d;
- projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d);
- //add small Gaussian noise
- RNG& rng = theRNG();
- for (size_t i = 0; i < p2d.size(); i++)
- {
- p2d[i].x += rng.gaussian(5e-2);
- p2d[i].y += rng.gaussian(5e-2);
- }
- Mat rvec_est, tvec_est;
- solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, false, SOLVEPNP_EPNP);
- {
- Mat rvec_est_refine = rvec_est.clone(), tvec_est_refine = tvec_est.clone();
- solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est_refine, tvec_est_refine, true, SOLVEPNP_ITERATIVE);
- cout << "\nmethod: Levenberg-Marquardt (C API)" << endl;
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est (EPnP): " << rvec_est.t() << std::endl;
- cout << "rvec_est_refine: " << rvec_est_refine.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est (EPnP): " << tvec_est.t() << std::endl;
- cout << "tvec_est_refine: " << tvec_est_refine.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-2);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-3);
- EXPECT_LT(cvtest::norm(rvec_ground_truth, rvec_est_refine, NORM_INF), cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF));
- EXPECT_LT(cvtest::norm(tvec_ground_truth, tvec_est_refine, NORM_INF), cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF));
- }
- {
- Mat rvec_est_refine = rvec_est.clone(), tvec_est_refine = tvec_est.clone();
- solvePnPRefineLM(p3d, p2d, intrinsics, noArray(), rvec_est_refine, tvec_est_refine);
- cout << "\nmethod: Levenberg-Marquardt (C++ API)" << endl;
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est: " << rvec_est.t() << std::endl;
- cout << "rvec_est_refine: " << rvec_est_refine.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est: " << tvec_est.t() << std::endl;
- cout << "tvec_est_refine: " << tvec_est_refine.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-2);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-3);
- EXPECT_LT(cvtest::norm(rvec_ground_truth, rvec_est_refine, NORM_INF), cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF));
- EXPECT_LT(cvtest::norm(tvec_ground_truth, tvec_est_refine, NORM_INF), cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF));
- }
- {
- Mat rvec_est_refine = rvec_est.clone(), tvec_est_refine = tvec_est.clone();
- solvePnPRefineVVS(p3d, p2d, intrinsics, noArray(), rvec_est_refine, tvec_est_refine);
- cout << "\nmethod: Virtual Visual Servoing" << endl;
- cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
- cout << "rvec_est: " << rvec_est.t() << std::endl;
- cout << "rvec_est_refine: " << rvec_est_refine.t() << std::endl;
- cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
- cout << "tvec_est: " << tvec_est.t() << std::endl;
- cout << "tvec_est_refine: " << tvec_est_refine.t() << std::endl;
- EXPECT_LE(cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-2);
- EXPECT_LE(cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-3);
- EXPECT_LT(cvtest::norm(rvec_ground_truth, rvec_est_refine, NORM_INF), cvtest::norm(rvec_ground_truth, rvec_est, NORM_INF));
- EXPECT_LT(cvtest::norm(tvec_ground_truth, tvec_est_refine, NORM_INF), cvtest::norm(tvec_ground_truth, tvec_est, NORM_INF));
- }
- }
- }
- TEST(Calib3d_SolvePnPRansac, minPoints)
- {
- //https://github.com/opencv/opencv/issues/14423
- Mat matK = Mat::eye(3,3,CV_64FC1);
- Mat distCoeff = Mat::zeros(1,5,CV_64FC1);
- Matx31d true_rvec(0.9072420896651262, 0.09226497171882152, 0.8880772883671504);
- Matx31d true_tvec(7.376333362427632, 8.434449036856979, 13.79801619778456);
- {
- //nb points = 5 --> ransac_kernel_method = SOLVEPNP_EPNP
- Mat keypoints13D = (Mat_<float>(5, 3) << 12.00604, -2.8654366, 18.472504,
- 7.6863389, 4.9355154, 11.146358,
- 14.260933, 2.8320458, 12.582781,
- 3.4562225, 8.2668982, 11.300434,
- 15.316854, 3.7486348, 12.491116);
- vector<Point2f> imagesPoints;
- projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, imagesPoints);
- Mat keypoints22D(keypoints13D.rows, 2, CV_32FC1);
- vector<Point3f> objectPoints;
- for (int i = 0; i < static_cast<int>(imagesPoints.size()); i++)
- {
- keypoints22D.at<float>(i,0) = imagesPoints[i].x;
- keypoints22D.at<float>(i,1) = imagesPoints[i].y;
- objectPoints.push_back(Point3f(keypoints13D.at<float>(i,0), keypoints13D.at<float>(i,1), keypoints13D.at<float>(i,2)));
- }
- Mat rvec = Mat::zeros(1,3,CV_64FC1);
- Mat Tvec = Mat::zeros(1,3,CV_64FC1);
- solvePnPRansac(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec);
- Mat rvec2, Tvec2;
- solvePnP(objectPoints, imagesPoints, matK, distCoeff, rvec2, Tvec2, false, SOLVEPNP_EPNP);
- EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-4);
- EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-4);
- EXPECT_LE(cvtest::norm(rvec, rvec2, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(Tvec, Tvec2, NORM_INF), 1e-6);
- }
- {
- //nb points = 4 --> ransac_kernel_method = SOLVEPNP_P3P
- Mat keypoints13D = (Mat_<float>(4, 3) << 12.00604, -2.8654366, 18.472504,
- 7.6863389, 4.9355154, 11.146358,
- 14.260933, 2.8320458, 12.582781,
- 3.4562225, 8.2668982, 11.300434);
- vector<Point2f> imagesPoints;
- projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, imagesPoints);
- Mat keypoints22D(keypoints13D.rows, 2, CV_32FC1);
- vector<Point3f> objectPoints;
- for (int i = 0; i < static_cast<int>(imagesPoints.size()); i++)
- {
- keypoints22D.at<float>(i,0) = imagesPoints[i].x;
- keypoints22D.at<float>(i,1) = imagesPoints[i].y;
- objectPoints.push_back(Point3f(keypoints13D.at<float>(i,0), keypoints13D.at<float>(i,1), keypoints13D.at<float>(i,2)));
- }
- Mat rvec = Mat::zeros(1,3,CV_64FC1);
- Mat Tvec = Mat::zeros(1,3,CV_64FC1);
- solvePnPRansac(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec);
- Mat rvec2, Tvec2;
- solvePnP(objectPoints, imagesPoints, matK, distCoeff, rvec2, Tvec2, false, SOLVEPNP_P3P);
- EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-4);
- EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-4);
- EXPECT_LE(cvtest::norm(rvec, rvec2, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(Tvec, Tvec2, NORM_INF), 1e-6);
- }
- }
- TEST(Calib3d_SolvePnPRansac, inputShape)
- {
- //https://github.com/opencv/opencv/issues/14423
- Mat matK = Mat::eye(3,3,CV_64FC1);
- Mat distCoeff = Mat::zeros(1,5,CV_64FC1);
- Matx31d true_rvec(0.9072420896651262, 0.09226497171882152, 0.8880772883671504);
- Matx31d true_tvec(7.376333362427632, 8.434449036856979, 13.79801619778456);
- {
- //Nx3 1-channel
- Mat keypoints13D = (Mat_<float>(6, 3) << 12.00604, -2.8654366, 18.472504,
- 7.6863389, 4.9355154, 11.146358,
- 14.260933, 2.8320458, 12.582781,
- 3.4562225, 8.2668982, 11.300434,
- 10.00604, 2.8654366, 15.472504,
- -4.6863389, 5.9355154, 13.146358);
- vector<Point2f> imagesPoints;
- projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, imagesPoints);
- Mat keypoints22D(keypoints13D.rows, 2, CV_32FC1);
- for (int i = 0; i < static_cast<int>(imagesPoints.size()); i++)
- {
- keypoints22D.at<float>(i,0) = imagesPoints[i].x;
- keypoints22D.at<float>(i,1) = imagesPoints[i].y;
- }
- Mat rvec, Tvec;
- solvePnPRansac(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec);
- EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-6);
- }
- {
- //1xN 3-channel
- Mat keypoints13D(1, 6, CV_32FC3);
- keypoints13D.at<Vec3f>(0,0) = Vec3f(12.00604f, -2.8654366f, 18.472504f);
- keypoints13D.at<Vec3f>(0,1) = Vec3f(7.6863389f, 4.9355154f, 11.146358f);
- keypoints13D.at<Vec3f>(0,2) = Vec3f(14.260933f, 2.8320458f, 12.582781f);
- keypoints13D.at<Vec3f>(0,3) = Vec3f(3.4562225f, 8.2668982f, 11.300434f);
- keypoints13D.at<Vec3f>(0,4) = Vec3f(10.00604f, 2.8654366f, 15.472504f);
- keypoints13D.at<Vec3f>(0,5) = Vec3f(-4.6863389f, 5.9355154f, 13.146358f);
- vector<Point2f> imagesPoints;
- projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, imagesPoints);
- Mat keypoints22D(keypoints13D.rows, keypoints13D.cols, CV_32FC2);
- for (int i = 0; i < static_cast<int>(imagesPoints.size()); i++)
- {
- keypoints22D.at<Vec2f>(0,i) = Vec2f(imagesPoints[i].x, imagesPoints[i].y);
- }
- Mat rvec, Tvec;
- solvePnPRansac(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec);
- EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-6);
- }
- {
- //Nx1 3-channel
- Mat keypoints13D(6, 1, CV_32FC3);
- keypoints13D.at<Vec3f>(0,0) = Vec3f(12.00604f, -2.8654366f, 18.472504f);
- keypoints13D.at<Vec3f>(1,0) = Vec3f(7.6863389f, 4.9355154f, 11.146358f);
- keypoints13D.at<Vec3f>(2,0) = Vec3f(14.260933f, 2.8320458f, 12.582781f);
- keypoints13D.at<Vec3f>(3,0) = Vec3f(3.4562225f, 8.2668982f, 11.300434f);
- keypoints13D.at<Vec3f>(4,0) = Vec3f(10.00604f, 2.8654366f, 15.472504f);
- keypoints13D.at<Vec3f>(5,0) = Vec3f(-4.6863389f, 5.9355154f, 13.146358f);
- vector<Point2f> imagesPoints;
- projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, imagesPoints);
- Mat keypoints22D(keypoints13D.rows, keypoints13D.cols, CV_32FC2);
- for (int i = 0; i < static_cast<int>(imagesPoints.size()); i++)
- {
- keypoints22D.at<Vec2f>(i,0) = Vec2f(imagesPoints[i].x, imagesPoints[i].y);
- }
- Mat rvec, Tvec;
- solvePnPRansac(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec);
- EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-6);
- }
- {
- //vector<Point3f>
- vector<Point3f> keypoints13D;
- keypoints13D.push_back(Point3f(12.00604f, -2.8654366f, 18.472504f));
- keypoints13D.push_back(Point3f(7.6863389f, 4.9355154f, 11.146358f));
- keypoints13D.push_back(Point3f(14.260933f, 2.8320458f, 12.582781f));
- keypoints13D.push_back(Point3f(3.4562225f, 8.2668982f, 11.300434f));
- keypoints13D.push_back(Point3f(10.00604f, 2.8654366f, 15.472504f));
- keypoints13D.push_back(Point3f(-4.6863389f, 5.9355154f, 13.146358f));
- vector<Point2f> keypoints22D;
- projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, keypoints22D);
- Mat rvec, Tvec;
- solvePnPRansac(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec);
- EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-6);
- }
- {
- //vector<Point3d>
- vector<Point3d> keypoints13D;
- keypoints13D.push_back(Point3d(12.00604f, -2.8654366f, 18.472504f));
- keypoints13D.push_back(Point3d(7.6863389f, 4.9355154f, 11.146358f));
- keypoints13D.push_back(Point3d(14.260933f, 2.8320458f, 12.582781f));
- keypoints13D.push_back(Point3d(3.4562225f, 8.2668982f, 11.300434f));
- keypoints13D.push_back(Point3d(10.00604f, 2.8654366f, 15.472504f));
- keypoints13D.push_back(Point3d(-4.6863389f, 5.9355154f, 13.146358f));
- vector<Point2d> keypoints22D;
- projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, keypoints22D);
- Mat rvec, Tvec;
- solvePnPRansac(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec);
- EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-6);
- EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-6);
- }
- }
- TEST(Calib3d_SolvePnP, inputShape)
- {
- //https://github.com/opencv/opencv/issues/14423
- Mat matK = Mat::eye(3,3,CV_64FC1);
- Mat distCoeff = Mat::zeros(1,5,CV_64FC1);
- Matx31d true_rvec(0.407, 0.092, 0.88);
- Matx31d true_tvec(0.576, -0.43, 1.3798);
- vector<Point3d> objectPoints;
- const double L = 0.5;
- objectPoints.push_back(Point3d(-L, -L, L));
- objectPoints.push_back(Point3d( L, -L, L));
- objectPoints.push_back(Point3d( L, L, L));
- objectPoints.push_back(Point3d(-L, L, L));
- objectPoints.push_back(Point3d(-L, -L, -L));
- objectPoints.push_back(Point3d( L, -L, -L));
- const int methodsCount = 6;
- int methods[] = {SOLVEPNP_ITERATIVE, SOLVEPNP_EPNP, SOLVEPNP_P3P, SOLVEPNP_AP3P, SOLVEPNP_IPPE, SOLVEPNP_IPPE_SQUARE};
- for (int method = 0; method < methodsCount; method++)
- {
- if (methods[method] == SOLVEPNP_IPPE_SQUARE)
- {
- objectPoints[0] = Point3d(-L, L, 0);
- objectPoints[1] = Point3d( L, L, 0);
- objectPoints[2] = Point3d( L, -L, 0);
- objectPoints[3] = Point3d(-L, -L, 0);
- }
- {
- //Nx3 1-channel
- Mat keypoints13D;
- if (methods[method] == SOLVEPNP_P3P || methods[method] == SOLVEPNP_AP3P ||
- methods[method] == SOLVEPNP_IPPE || methods[method] == SOLVEPNP_IPPE_SQUARE)
- {
- keypoints13D = Mat(4, 3, CV_32FC1);
- }
- else
- {
- keypoints13D = Mat(6, 3, CV_32FC1);
- }
- for (int i = 0; i < keypoints13D.rows; i++)
- {
- keypoints13D.at<float>(i,0) = static_cast<float>(objectPoints[i].x);
- keypoints13D.at<float>(i,1) = static_cast<float>(objectPoints[i].y);
- keypoints13D.at<float>(i,2) = static_cast<float>(objectPoints[i].z);
- }
- vector<Point2f> imagesPoints;
- projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, imagesPoints);
- Mat keypoints22D(keypoints13D.rows, 2, CV_32FC1);
- for (int i = 0; i < static_cast<int>(imagesPoints.size()); i++)
- {
- keypoints22D.at<float>(i,0) = imagesPoints[i].x;
- keypoints22D.at<float>(i,1) = imagesPoints[i].y;
- }
- Mat rvec, Tvec;
- solvePnP(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec, false, methods[method]);
- EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-3);
- }
- {
- //1xN 3-channel
- Mat keypoints13D;
- if (methods[method] == SOLVEPNP_P3P || methods[method] == SOLVEPNP_AP3P ||
- methods[method] == SOLVEPNP_IPPE || methods[method] == SOLVEPNP_IPPE_SQUARE)
- {
- keypoints13D = Mat(1, 4, CV_32FC3);
- }
- else
- {
- keypoints13D = Mat(1, 6, CV_32FC3);
- }
- for (int i = 0; i < keypoints13D.cols; i++)
- {
- keypoints13D.at<Vec3f>(0,i) = Vec3f(static_cast<float>(objectPoints[i].x),
- static_cast<float>(objectPoints[i].y),
- static_cast<float>(objectPoints[i].z));
- }
- vector<Point2f> imagesPoints;
- projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, imagesPoints);
- Mat keypoints22D(keypoints13D.rows, keypoints13D.cols, CV_32FC2);
- for (int i = 0; i < static_cast<int>(imagesPoints.size()); i++)
- {
- keypoints22D.at<Vec2f>(0,i) = Vec2f(imagesPoints[i].x, imagesPoints[i].y);
- }
- Mat rvec, Tvec;
- solvePnP(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec, false, methods[method]);
- EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-3);
- }
- {
- //Nx1 3-channel
- Mat keypoints13D;
- if (methods[method] == SOLVEPNP_P3P || methods[method] == SOLVEPNP_AP3P ||
- methods[method] == SOLVEPNP_IPPE || methods[method] == SOLVEPNP_IPPE_SQUARE)
- {
- keypoints13D = Mat(4, 1, CV_32FC3);
- }
- else
- {
- keypoints13D = Mat(6, 1, CV_32FC3);
- }
- for (int i = 0; i < keypoints13D.rows; i++)
- {
- keypoints13D.at<Vec3f>(i,0) = Vec3f(static_cast<float>(objectPoints[i].x),
- static_cast<float>(objectPoints[i].y),
- static_cast<float>(objectPoints[i].z));
- }
- vector<Point2f> imagesPoints;
- projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, imagesPoints);
- Mat keypoints22D(keypoints13D.rows, keypoints13D.cols, CV_32FC2);
- for (int i = 0; i < static_cast<int>(imagesPoints.size()); i++)
- {
- keypoints22D.at<Vec2f>(i,0) = Vec2f(imagesPoints[i].x, imagesPoints[i].y);
- }
- Mat rvec, Tvec;
- solvePnP(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec, false, methods[method]);
- EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-3);
- }
- {
- //vector<Point3f>
- vector<Point3f> keypoints13D;
- const int nbPts = (methods[method] == SOLVEPNP_P3P || methods[method] == SOLVEPNP_AP3P ||
- methods[method] == SOLVEPNP_IPPE || methods[method] == SOLVEPNP_IPPE_SQUARE) ? 4 : 6;
- for (int i = 0; i < nbPts; i++)
- {
- keypoints13D.push_back(Point3f(static_cast<float>(objectPoints[i].x),
- static_cast<float>(objectPoints[i].y),
- static_cast<float>(objectPoints[i].z)));
- }
- vector<Point2f> keypoints22D;
- projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, keypoints22D);
- Mat rvec, Tvec;
- solvePnP(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec, false, methods[method]);
- EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-3);
- }
- {
- //vector<Point3d>
- vector<Point3d> keypoints13D;
- const int nbPts = (methods[method] == SOLVEPNP_P3P || methods[method] == SOLVEPNP_AP3P ||
- methods[method] == SOLVEPNP_IPPE || methods[method] == SOLVEPNP_IPPE_SQUARE) ? 4 : 6;
- for (int i = 0; i < nbPts; i++)
- {
- keypoints13D.push_back(objectPoints[i]);
- }
- vector<Point2d> keypoints22D;
- projectPoints(keypoints13D, true_rvec, true_tvec, matK, distCoeff, keypoints22D);
- Mat rvec, Tvec;
- solvePnP(keypoints13D, keypoints22D, matK, distCoeff, rvec, Tvec, false, methods[method]);
- EXPECT_LE(cvtest::norm(true_rvec, rvec, NORM_INF), 1e-3);
- EXPECT_LE(cvtest::norm(true_tvec, Tvec, NORM_INF), 1e-3);
- }
- }
- }
- }} // namespace
|